OSRAM CN DELSS2.27

产品规格书

FIREFLY™ E1608

CN DELSS2.27

FIREFLY E1608 系列扩展了艾迈斯欧司朗的可见光系列产品在 运动和健康监测等移动设备上的应用。

该系列产品焊盘尺寸小,可靠性高,尺寸仅为 0.8 mm x 1.6 mm x 0.6 mm,客户可用其进行更灵活的产品设计。超红光 CH DELSS1.22 专为 SPO2 应用而设计。它所具有的 660 nm 的特 殊窄波长有助于提升信号检测性能,非常适合此类应用。

应用

- 电器和工具
- 生命体征监测

- 数字诊断设备
- 雨量、阳光和隧道传感

特点

- 封装: 白色SMT封装, 无色透明树脂
- 芯片技术: IR Thinfilm
- 典型发光角度: 120° (朗伯发射体)
- 颜色: λ_{centroid} = 850 nm (● infrared (850 nm))
- 防腐蚀级别: 2B
- 认证: AEC-Q102认证通过
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)

CN DELSS2.27 产品规格书

订购信息

型号 辐射强度 1) 订单码

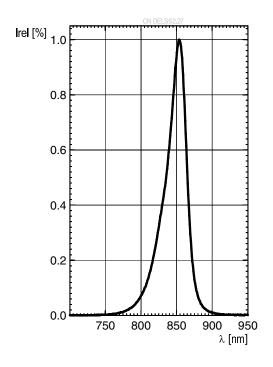
典型值

 $I_{\rm F}$ = 20 mA; $t_{\rm p}$ = 20 ms

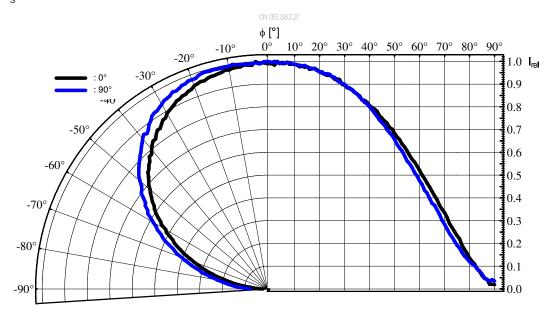
CN DELSS2.27 3.7 mW/sr Q65115A1092

最大额定 参数	图形符号		值
工作温度	T _{op}	最小值 最大值	-40 °C 110 °C
储存温度	T_{stg}	最小值 最大值	-40 °C 110 °C
结温	T _j	最大值	125 °C
正向电流 T _s = 25 °C	I _F	最小值 最大值	1 mA 100 mA
正向脉冲电流 t _p ≤ 100μs; D = 0.005	I _{F pulse}	最大值	1 A
反向电压 ²⁾ T _s = 25 °C	V_R	最大值	5 V
ESD耐受电压 acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	V_{ESD}		2 kV

特性

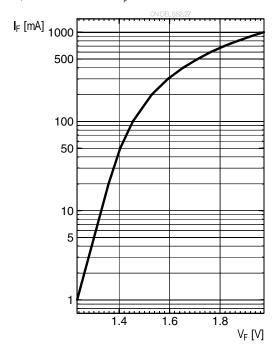

 I_F = 20 mA; T_S = 25 °C

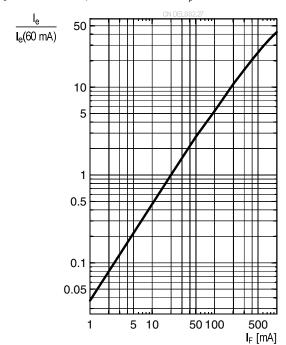
参数	图形符号		值
峰值波长	λ_{peak}	典型值	860 nm
质心波长 ³⁾	$\lambda_{ ext{centroid}}$	最小值	840 nm
I _F = 20 mA		典型值	850 nm
•		最大值	860 nm
光谱带宽, 50% I _{rel,max} 4)	$\Delta \lambda$	最大值	30 nm
50% I _v 发光角度	2φ	典型值	120 °
正向电压 5	V _F	最小值	1.20 V
I _F = 20 mA	·	典型值	1.35 V
•		最大值	1.50 V
	I _R	典型值	0.01 μΑ
$V_R = 5 V$		最大值	10 μΑ
实际热阻 PN结/焊点 ⁶⁾	$R_{ ext{thJS real}}$	典型值	30 K / W
	unce roal	最大值	38 K / W
福射强度 ¹⁾⁷⁾	l _e	最小值	3.2 mW/sr
$I_{\rm F}$ = 20 mA; $t_{\rm D}$ = 20 ms	Ç	典型值	3.7 mW/sr
		最大值	4.6 mW/sr


相对光谱发射 8), 9)

 $I_{e,rel} = f(\lambda); I_{F} = 20 \text{ mA}; t_{p} = 20 \text{ ms}$

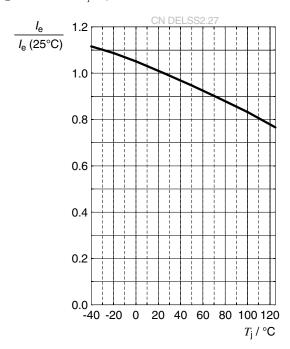
辐射特性 8), 9)

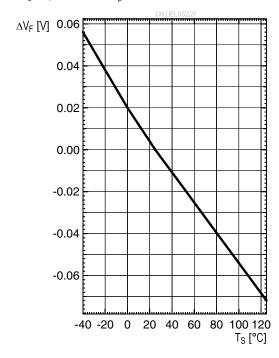

 $I_{rel} = f(\phi); T_S = 25 °C$


正向电流 8), 9)

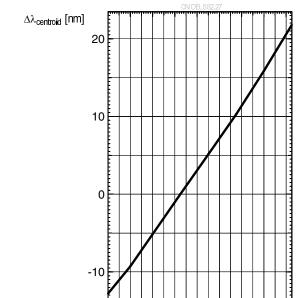
 $I_{_F}$ = f ($V_{_F}$); single pulse; $t_{_p}$ = 100 μs

相对辐射强度 8), 9)


 $I_e/I_e(20\text{mA}) = f(I_F)$; single pulse; $t_p = 100 \text{ } \mu\text{s}$


相对辐射强度 8)

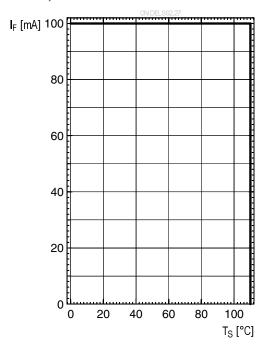
$$I_{E}/I_{E}(25 \text{ °C}) = f(T_{i}); I_{E} = 20 \text{ mA}$$


正向电压 8)

$$V_F = f(T_S); I_F = 20mA; t_p = 20ms$$

质心波长 8)

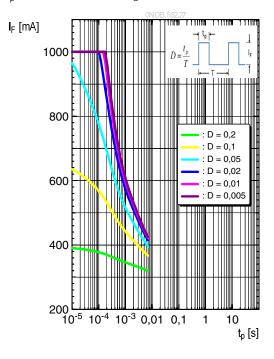
$$\lambda_{centroid} = f(T_S); I_F = 20mA; t_p = 20ms$$



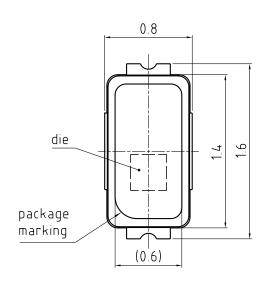
-40 -20 0 20 40 60 80 100 120

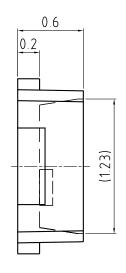

最大容许正向电流

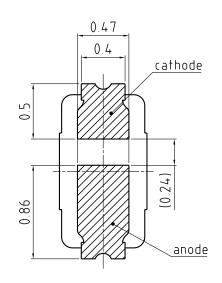
 $I_F = f(T_S)$; Rth_{js} = 38 K / W


容许脉冲处理能力

 $I_F = f(t_p)$; D = parameter; $T_S = 85$ °C


容许脉冲处理能力


 $I_F = f(t_D)$; D = parameter; $T_S = 110$ °C



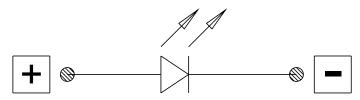
尺寸图 10)

general tolerance ±0.1 lead finish Ag

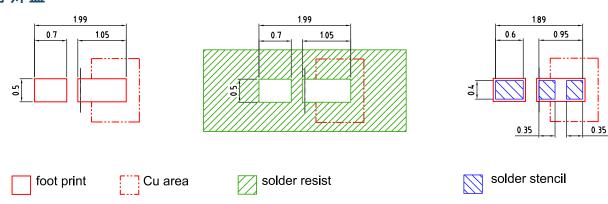
C67062-A0191-A2..-02

备注:

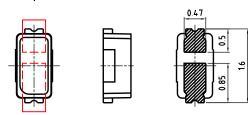
近似重量: 2.0 mg


包装信息: 正极

腐蚀试验: 类别: 2B


测试条件: 25°C / 75 % RH / 10 ppm $\rm H_2S$ / 21 days (IEC 60068-2-43)

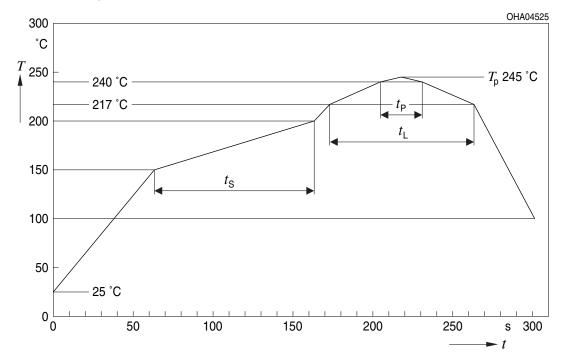
内部电子电路



推荐焊盘 10)

The usage of solder resist between anode and cathode pads is mandatory for applications where water may condense

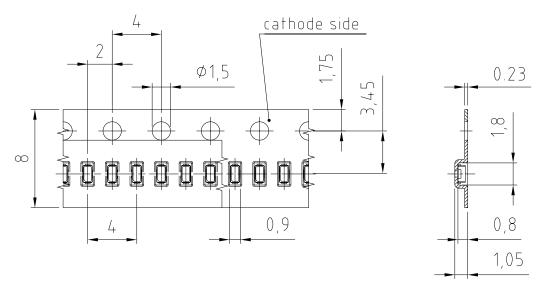
Component Location on Pad


E062.3010.187 -02

根据MIL-PRF-81705,所有产品均应包装在干燥的包装袋(防潮袋,MBB)中,打开MBB后,产品应经过回流焊工艺处理。由 于使用镀银焊盘,未使用的剩余LED应避免受环境影响。为了保证可焊性,建议在焊接前保护镀银焊盘免受腐蚀环境的影响。 为了获得更佳的焊点连接效果,我们建议在标准氮气环境下进行焊接。

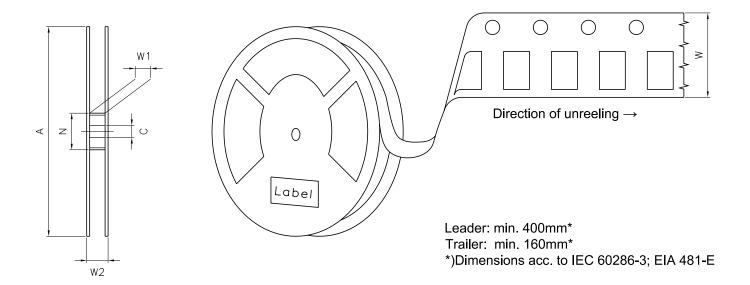
回流焊曲线

根据JEDEC J-STD-020E, 产品符合MSL等级 2


曲线特征	符号		无铅组织		单位
		最小值	推荐值	最大值	
预热升温速率* ⁾	'	'	2	3	K/s
25 °C 至 150 °C					
时间 t _s	t_s	60	100	120	S
$T_{Smin} \; \mathbf{\Xi} \; T_{Smax}$					
峰值升温速率*)			2	3	K/s
T _{Smax} 至 T _P					
液相线温度	T_{L}		217		°C
超过液相线温度的时间	t _L		80	100	S
峰值温度	T _P		245	260	°C
温度保持在指定峰值温度 T _p - 5 K 的 5 °C 范围内的时间	t _P	10	20	30	S
降温速率* T _P 至 100 °C			3	6	K/s
时间 25 °C 至 T _p				480	S

所有温度均指从元件顶部测得的封装中心温度

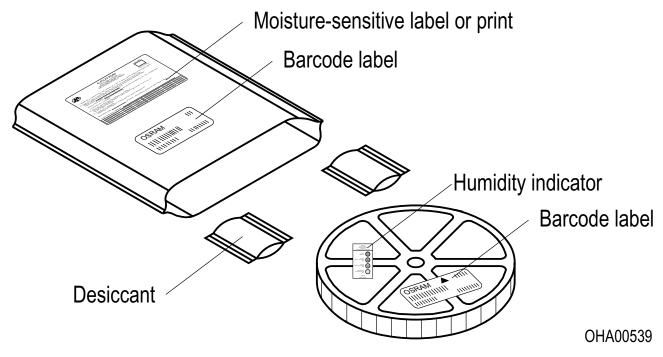
^{*} 斜率计算 DT/Dt: Dt 最大值为 5 s; 涵盖整个 T 范围


编带机 10)

C63062-A4275-B5 -02

编带和卷带 11)

盘尺寸


Α	W	N_{\min}	W ₁	W_{2max}	每卷带上的数量
180 mm	8 + 0.3 / - 0.1 mm	60 mm	8.4 + 2 mm	14.4 mm	9000

条形码-产品-标签(BPL)

干燥包装工艺和材料 10)

根据JEDEC-STD-33,湿敏产品包装在一个干燥的袋子中,包含干燥剂和湿度卡.

备注

人眼安全的评估按照IEC 62471:2008标准(photo biological safety of lamps and lamp systems)进行。在本 CIE标准的风险分组系统中,本数据表中指定的LED属于该类 豁免等级 (暴露时间 10000 s). 在某些情况下(如 不同的暴露时间、瞳孔大小、观察距离等),尽管这些产品对人眼没有危害。但是理论上来说,由于强光光源 的致盲作用,它们具有很高的二次曝光可能性。例如当注视其他明亮的光源(如前照灯)时,也会出现视力暂时 下降和余像情况,也可能会导致不同程度的急躁、恼怒、视力受损等情形

除其他物质外,该器件的子组件还包含金属填充材料,包括银。金属填充材料可能会受到含残留侵蚀性物质 的环境的影响。因此,我们建议客户在存储、生产和使用过程中尽量少将器件暴露于腐蚀性物质环境中。当 使用上述测试条件进行测试时,器件在规定的测试持续时间内表现出了颜色的变化,但其各项性能的变化均 未超出失效极限的定义。IEC60810中描述了相关的各项失效极限。

更多的应用信息,请访问 https://ams-osram.com/support/application-notes

免责声明

语言

如中、英文文本描述有任何差异或偏差,以英文文本为准。

The English version of this document will prevail in case of any discrepancies or deviations between the Chinese and English document.

请注意!

该信息仅描述了组件的类型,不能视为对组件特征的保证。本公司保留对交付条款和设计更改的权利。由于 技术要求,组件可能含有危险物质。

如需咨询相关类型的信息,请联系我们的销售组织。

如需打印或下载,请自行在我们网站上寻找最新版本。

包装

请使用您所知的回收操作员。我们亦可帮助您与离您最近的销售办事处联系。

若双方另行存在协议,在您事先对包装材料已进行分类的前提下,我们亦可回收包装材料,但贵方必须承担 运输费用。对于退回给我们的包装材料,若未事先分类或我司并无义务接收的,我们将向您收取相关回收费 用并开具发票。

产品安全设备/应用或医疗设备/应用

我们的组件并非开发、构建或测试用作安全相关组件或应用于医疗设备,亦不适格适合在该等设备的模组或 系统层面使用。

如果买方或买方供货的终端客户考虑在产品安全设备/应用或医疗设备/应用中使用我们的组件,买方和/或客 户必须立即通知我们的当地销售伙伴,由我方和买方和/或客户将就客户的特定需求进行分析和协调。

词汇表

- 辐射强度: 在ω= 0.01 Sr立体角条件下测量
- 反向工作: 应在规定的范围内,对本产品施加正向电流。 应避免施加任何在规定的可发光的电压范围之 2) 外的连续反向或正向电流电压,因为这可能会引起迁移,从而改变电光特性或损坏LED。
- 波长: 波长通常在25 ms电流脉冲期间测量,内部再现性为±0.5 nm,扩展不确定度为±1 nm (依据包含 因子k=3的不确定度测量)。
- 4) 波长: 波长的测量公差为±1 nm。
- 5) 正向电压: 正向电压通常在8 ms电流脉冲期间测量,内部再现性为±0.05 V,扩展不确定度为±0.1 V (依 据包含因子k=3的不确定度测量)。
- 6) 热电阻: Rth max以统计值(6σ)为基础。
- 7) 亮度: 亮度值的测量公差为±11%。
- 典型值: 由于半导体器件制造工艺的特殊条件,技术参数的典型数据或计算相关性只能反映统计数字。这 些参数不一定对应每个产品的实际参数,可能不同于产品的典型数据和计算相关性或典型特性线。如有 要求(例如由于技术改进),这些典型数据会被更改,恕不另行通知。
- 9) 测试温度: TA= 25℃
- 测量公差: 除非图纸中另有说明, 公差表示为±0.1, 尺寸表示为mm。 10)
- 编带和卷料: 所有尺寸和公差均遵循IEC 60286-3,单位为mm。

修订历史

版本	日期	修改
1.0	2025-09-23	最大额定 降额图表

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG

Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

