Product Document

Published by ams OSRAM Group

Application Note

AN000610

AS702x AppNote

Using External Temperature Sensors

v1-00 • 2019-Mar-29

Content Guide

1	Using an External NTC as					
	Temperature Sensor3					
2	Revision Information7					
3	Legal Information8					

amu

1 Using an External NTC as Temperature Sensor

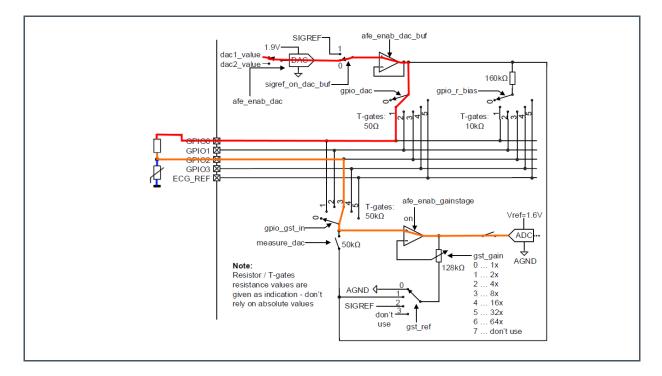
The electrical analog front end allows the use of an external resistive divider consisting of a normal resistor and an NTC to sense temperature. For this purpose, we connect the divider between two GPIO pins and GND. The DAC is then set to output 1.9 V to the according GPIO pin e.g. GPIO0 in the drawing. The AFE gain stage is set to 1 and connected to the second GPIO pin (GPIO2 in the drawing) and the sequencer is configured to include the AFE in its sampling.

As a resistive divider we recommend a 100 k NTC together with a 100 k resistor.

Figure 1:

Electrical-Analog-Frontend Configuration for NTC Temperature Sensor

Electrical Analog Frontend Configu	ration ? X
Enable DAC	Gain stage
Enable Enable DAC buffer SIGREF to DAC buffer	Enable Gain stage input GPI02
DAC output to gain stage input DAC on GPIO	Gain reference voltage
DAC on GPIO0 DAC value 1 DAC value 2	Gain
1,900000 1,900000 Switch DAC values 1-2-1-2-1-2-1-2-1-2-	Bias No resistive biasing
	OK Cancel


Figure 2:

Sequencer Configuration for NTC Temperature Sensor

 Enable seque 	encer	Ultra low p								
Sample rate		Diode control			Enabled ADC	channels				
Frequency (Hz) 202		O PD1->LED1;	PD2->LED2; PD3->LED3;	PD4->LED4	GPI02		SD2 before gain stage			
Period (us)	4950				 Electrica 	al frontend	✓ SD1 after ga	ain stage		
		PD1-PD4 cor	ECG amplifie	ECG amplifier input						
Sequencer cycl	es				Tempera	ature	SD2 after ga	SD2 after gain stage		
Cycle period	165	PD1,PD2->LE	ED1; PD3,PD4->LED2		Pregain		SD1 before	gain stage		
Clock divider	10				GPIO3		ECG amplifie	er output		
Run continuously Run for number of cycles Number of cycles		LED driver Primary LED timing	LED driver Synchronous demodu Primary LED timing Positive multiplication			us demodulat	or 2 ADC start t	ime 1		
		Start time 82	Start time	83	Start time	0	2nd TIA	83		
		Stop time 103	Stop time	103	Stop time	0	3d TIA	0		
Subsampling		Secondery LED ti	ming Negative n	Negative multiplication		Negative multiplication		Integrator		
1st All		Start time 0	Start time	1	Start time	0	Start time	1		
Ist	Subsampling ratio 1		Stop time	20	Stop time	0	Stop time	•		

Figure 3:

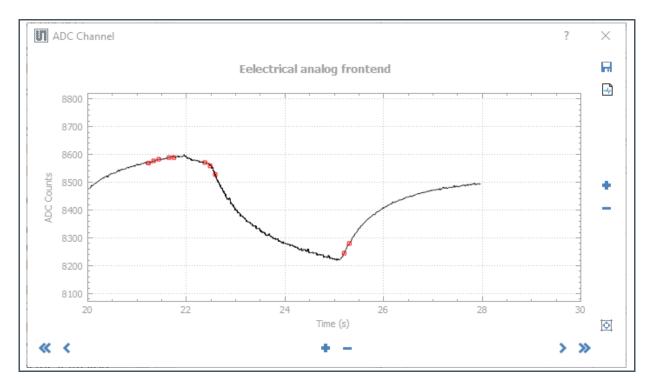

Electrical-Analog-Frontend Block Diagram with External NTC (datasheet p.61)

Figure 4:

Data Displayed in the Electrical Analog Frontend Graph.

Figure 5:

Register Settings for NTC Temperature sensor

	Addr.	7	6	5	4	3	2	1	0	Value
EAF_GST	0x80	0	1	1	0	0	0	0	0	0x60
EAF_BIAS	0x81	0	0	0						0x00
EAF_DAC	0x82				0	0	0	0	1	0x01
EAF_DAC1_L	0x83	1	1							0xC0
EAF_DAC1_H	0x84	1	1	1	1	1	1	1	1	0xFF
EAF_DAC2_L	0x85	1	1							0xC0
EAF_DAC2_H	0x86	1	1	1	1	1	1	1	1	0xFF
EAF_DAC_CFG	0x87							0	0	0x00

Temperature changes act on the ADC value according to this formula:

RNTC=R0*exp-B*((1/(273+Tref))-(1/(273+Tnew)))

Vout = 1.9* RNTC/(Rfix+RNTC)

ADCout = Vout /1.6 *2^14

For our example with 100 k NTC and a B of 4190 we end up with

Vout25 = 0.95 V = 9728LSB

Vout35 = 0.74 V = 7577LSB

There are online tools that help with the calculation like:

https://www.electro-tech-online.com/tools/thermistor-resistance-calculator.php

or

http://www.giangrandi.ch/electronics/NTC/NTC.shtml

The temperature calculation can be done with these formulas:

Equation 1:

$$U_{adc} = \frac{ADC_{lsb} * 1.6}{2^{14}}$$

Equation 2:

$$R_{ntc} = \frac{R_{fix} * U_{adc}}{1.6 - U_{adc}}$$

Equation 3:

$$T = \frac{1}{\frac{\ln(\frac{R_{ntc}}{R_{25}})}{\beta} + \frac{1}{T_{25}}} - T_0$$

R_f is the fixed resistor (100 k), ADC_lsb is the digital output in lsb and T0 is 0°C in Kelvin (273).

amu

Page

2 **Revision Information**

Changes from previous version to current revision v1-00

Initial version

• Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

Correction of typographical errors is not explicitly mentioned.

3 Legal Information

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Information in this document is believed to be accurate and reliable. However, ams AG does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Applications that are described herein are for illustrative purposes only. ams AG makes no representation or warranty that such applications will be appropriate for the specified use without further testing or modification. ams AG takes no responsibility for the design, operation and testing of the applications and end-products as well as assistance with the applications or end-product designs when using ams AG products. ams AG is not liable for the suitability and fit of ams AG products in applications and end-products planned.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data or applications described herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

ams AG reserves the right to change information in this document at any time and without notice.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters	Please visit our website at www.ams.com
ams AG	Buy our products or get free samples online at www.ams.com/Products
Tobelbader Strasse 30	Technical Support is available at www.ams.com/Technical-Support
8141 Premstaetten	Provide feedback about this document at www.ams.com/Document-Feedback
Austria, Europe	For sales offices, distributors and representatives go to www.ams.com/Contact
Tel: +43 (0) 3136 500 0	For further information and requests, e-mail us at ams_sales@ams.com