# **CMUN Mira220** Datasheet

Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved



#### Mira220 Table of contents

**CALL OSRAM** 

# **Table of contents**

| 1 | <b>Gen</b><br>1.1<br>1.2                                                                                                                                                  | eral description4Key benefits & features5Applications5                                                                                                                                                                               |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Orde                                                                                                                                                                      | ering information6                                                                                                                                                                                                                   |
| 3 | Abs                                                                                                                                                                       | olute maximum ratings7                                                                                                                                                                                                               |
| 4 | Elec                                                                                                                                                                      | trical characteristics9                                                                                                                                                                                                              |
| 5 | <b>Typi</b><br>5.1                                                                                                                                                        | cal operating characteristics    10      Electro-optical characteristics    10                                                                                                                                                       |
|   | 5.2<br>5.3                                                                                                                                                                | Spectral characteristics                                                                                                                                                                                                             |
| 6 | Fune                                                                                                                                                                      | ctional description13                                                                                                                                                                                                                |
|   | <ul> <li>6.1</li> <li>6.2</li> <li>6.3</li> <li>6.4</li> <li>6.5</li> <li>6.6</li> <li>6.7</li> <li>6.8</li> <li>6.9</li> <li>6.10</li> <li>6.11</li> <li>6.12</li> </ul> | Sensor architecture13Pixel array15Column ADC15Data processing15CSI-2 data protocol handling & D-PHY communicationinterface16Sequencer16CCI interface17PLL17Temperature sensor17OTP memory17Illumination trigger17Low power options17 |
| 7 | <b>Ope</b><br>7.1<br>7.2<br>7.3<br>7.4                                                                                                                                    | rating the sensor18Power supplies18Power-up/down sequence21PLL and clocking24CCI and register access24                                                                                                                               |



|                      | 1.1                                                                               | Sensor control modes                                                                                                                                                                 |                                                              |
|----------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                      | 7.8                                                                               | IO drive strength                                                                                                                                                                    |                                                              |
| 8                    | Con                                                                               | figuring the sensor                                                                                                                                                                  | 37                                                           |
|                      | 8.1                                                                               | Operation modes                                                                                                                                                                      | 37                                                           |
|                      | 8.2                                                                               | Configuring readout and exposure                                                                                                                                                     | 38                                                           |
|                      | 8.3                                                                               | Configuring the output data format                                                                                                                                                   | 50                                                           |
|                      | 8.4                                                                               | Configuring the on-chip data processing                                                                                                                                              | 59                                                           |
|                      | 8.5                                                                               | Additional features                                                                                                                                                                  | 64                                                           |
| 9                    | Reg                                                                               | ister description                                                                                                                                                                    | 74                                                           |
|                      | 0                                                                                 |                                                                                                                                                                                      |                                                              |
| 10                   | Pin a                                                                             | and package information                                                                                                                                                              | 79                                                           |
|                      | 10.1                                                                              | Bare die pin diagram                                                                                                                                                                 | 79                                                           |
|                      |                                                                                   |                                                                                                                                                                                      |                                                              |
|                      | 10.2                                                                              | Reconstructed wafer dimensions (Bare Die)                                                                                                                                            | 80                                                           |
|                      | 10.2<br>10.3                                                                      | Reconstructed wafer dimensions (Bare Die)                                                                                                                                            | 80<br>80                                                     |
|                      | 10.2<br>10.3<br>10.4                                                              | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description                                                                                              | 80<br>80<br>83                                               |
| 11                   | 10.2<br>10.3<br>10.4                                                              | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description                                                                                              | 80<br>80<br>83<br><b>85</b>                                  |
| 11<br>12             | 10.2<br>10.3<br>10.4<br>Colo                                                      | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description<br>or filter information<br>e & reel information                                             |                                                              |
| 11<br>12<br>13       | 10.2<br>10.3<br>10.4<br>Colc<br>Tape                                              | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description<br>or filter information<br>e & reel information                                             | 80<br>83<br>83<br>85<br>85<br>86<br>86                       |
| 11<br>12<br>13       | 10.2<br>10.3<br>10.4<br>Colo<br>Tape<br>App<br>13.1                               | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description<br>or filter information<br>e & reel information<br>endix<br>Reference documents             | 80<br>80<br>83<br>83<br>85<br>85<br>86<br>87<br>87           |
| 11<br>12<br>13       | 10.2<br>10.3<br>10.4<br><b>Colo</b><br><b>Tape</b><br>13.1<br>13.2                | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description<br>or filter information<br>& reel information<br>endix<br>Reference documents<br>Glossary   | 80<br>80<br>83<br>83<br>85<br>85<br>86<br>87<br>87<br>88     |
| 11<br>12<br>13       | 10.2<br>10.3<br>10.4<br><b>Colo</b><br><b>Tape</b><br>13.1<br>13.2                | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description<br>or filter information<br>& reel information<br>endix<br>Reference documents<br>Glossary   |                                                              |
| 11<br>12<br>13<br>14 | 10.2<br>10.3<br>10.4<br><b>Colo</b><br><b>Tape</b><br>13.1<br>13.2<br><b>Revi</b> | Reconstructed wafer dimensions (Bare Die)<br>CSP package information<br>Pin description<br>or filter information<br>e & reel information<br>endix<br>Reference documents<br>Glossary | 80<br>80<br>83<br>83<br>85<br>85<br>86<br>87<br>87<br>88<br> |

# Mira220 1/2.7" 2.2 MP NIR enhanced global shutter image sensor

# 1 General description

Mira220 is a 2.2 MP NIR enhanced global shutter image sensor designed for 2D and 3D consumer and industrial machine vision applications. The sensor has a small 2.79  $\mu$ m pixel size with high sensitivity made possible by a state of the art BSI technology. With an effective resolution of 1600 × 1400 and a maximum bit depth of 12 bits, the sensor supports on-chip operations like external triggering, windowing, horizontal or vertical mirroring. The maximum frame rate is 90 fps at full resolution and bit depth. The sensor has a MIPI CSI-2 interface to allow easy interfacing with a plethora of processors and FPGAs. On-chip registers can be accessed via the standard I<sup>2</sup>C interface for easy configuration of the sensor.

Due to its small size, configurability and high sensitivity both in visual as well as NIR, the Mira220 is well suited for 2D and 3D applications, which include Active Stereo Vision, Structured Light Vision for Robotics and AR/VR. High sensitivity in NIR enables increased measurement range and allows overall system power consumption optimization which is key for battery powered consumer and industrial applications.

# 1.1 Key benefits & features

The benefits and features of Mira220, 1/2.7" 2.2 MP NIR enhanced global shutter image sensor are listed below:

#### Table 1: Key benefits & features

| Benefits                                        | Features                                                                                   |
|-------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                 | 1/2.7"                                                                                     |
| Compact size with high recolution and hit donth | 1600 x 1400                                                                                |
| Compact size with high resolution and bit depth | 8/10/12-bit                                                                                |
|                                                 | 2.79 µm                                                                                    |
| High speed applications                         | 90 fps global shutter with CDS                                                             |
| Use in low light conditions                     | High sensitivity                                                                           |
| Compact size                                    | Small die size achieved via state of the art BSI technology.                               |
| NIR enhanced with high sensitivity              | Class leading QE at 940 nm combined with high sensitivity. Industry leading PLS at 940 nm. |
| On-chip noise reduction                         | Digital CDS and row noise correction                                                       |
| Poducod off chip processing                     | On-chip defect pixel detection and correction                                              |
| Neutrea on-only processing                      | On-chip image statistics generation                                                        |
| Extended battery operation                      | Low power consumption                                                                      |

# 1.2 Applications

- Mobile facial authentication
- Active stereo vision
- Structured light vision
- Smart home appliances
- Automatic identification and data capture (AIDC)
- QR readers
- Drones
- Smart wearable devices
- SLAM for robotics
- AR/VR

# 2

# Ordering information

| Product type   | Ordering code | Туре  | Package | Glass | Protective film | Delivery form       | MOQ               |
|----------------|---------------|-------|---------|-------|-----------------|---------------------|-------------------|
| Mira220-2QM1WP | Q65114A0086   | Mono  | CSP     | Plain | Yes             | Tape and reel       | Multiples of 2000 |
| Mira220-2QM1WA | Q65114A0087   | Mono  | CSP     | AR    | Yes             | Tape and reel       | Multiples of 2000 |
| Mira220-2QM1WO | Q65113A5069   | Mono  | CSP     | Plain | No              | Tape and reel       | Multiples of 2000 |
| Mira220-2QC1WP | Q65113A5403   | RGB   | CSP     | Plain | Yes             | Tape and reel       | Multiples of 2000 |
| Mira220-2QC1WA | Q65113A5404   | RGB   | CSP     | AR    | Yes             | Tape and reel       | Multiples of 2000 |
| Mira220-2QC1WO | Q65113A5405   | RGB   | CSP     | Plain | No              | Tape and reel       | Multiples of 2000 |
| Mira220-2QI1WP | Q65113A5408   | RGBIR | CSP     | Plain | Yes             | Tape and reel       | Multiples of 2000 |
| Mira220-2QI1WA | Q65113A5409   | RGBIR | CSP     | AR    | Yes             | Tape and reel       | Multiples of 2000 |
| Mira220-2QI1WO | Q65113A5410   | RGBIR | CSP     | Plain | No              | Tape and reel       | Multiples of 2000 |
| Mira220-2QM1D0 | Q65114A0085   | Mono  | RW      | -     | -               | Reconstructed wafer | Contact Sales     |
| Mira220-2QC1D0 | Q65113A5399   | RGB   | RW      | -     | -               | Reconstructed wafer | Contact Sales     |
| Mira220-2QI1D0 | Q65113A5406   | RGBIR | RW      | -     | -               | Reconstructed wafer | Contact Sales     |
| Mira220-2QM1WP | Q65113A5999   | Mono  | CSP     | Plain | Yes             | Tape and reel       | Multiples of 500  |
| Mira220-2QM1WA | Q65113A6000   | Mono  | CSP     | AR    | Yes             | Tape and reel       | Multiples of 500  |
| Mira220-2QC1WP | Q65113A5997   | RGB   | CSP     | Plain | Yes             | Tape and reel       | Multiples of 500  |
| Mira220-2QC1WA | Q65113A5998   | RGB   | CSP     | AR    | Yes             | Tape and reel       | Multiples of 500  |
| Mira220-2QI1WP | Q65113A5995   | RGBIR | CSP     | Plain | Yes             | Tape and reel       | Multiples of 500  |
| Mira220-2QI1WA | Q65113A5996   | RGBIR | CSP     | AR    | Yes             | Tape and reel       | Multiples of 500  |

# 3 Absolute maximum ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Table 2: Absolute maximum ratings of Mira220

| Symbol              | Parameter                                  | Min | Тур    | Max   | Unit | Comments                                                                                                                |
|---------------------|--------------------------------------------|-----|--------|-------|------|-------------------------------------------------------------------------------------------------------------------------|
| Electrical p        | parameters                                 |     |        |       |      |                                                                                                                         |
| VDD25               | Analog and pixel supply voltage            |     |        | 3.63  | V    |                                                                                                                         |
| VDD18               | I/O supply voltage                         |     |        | 4.125 | V    |                                                                                                                         |
| VDD13A              | Analog supply voltage                      |     |        | 3.63  | V    |                                                                                                                         |
| VDD13D              | Digital supply voltage                     |     |        | 3.63  | V    |                                                                                                                         |
| VDD13P              | MIPI, D-PHY and PLL supply voltage         |     |        | 3.63  | V    |                                                                                                                         |
| Digital I/O         |                                            |     |        |       |      |                                                                                                                         |
| I <sub>SCR</sub>    | Input current (latch-up immunity)          |     | ± 100  |       | mA   | JEDEC JESD78D Nov 2011                                                                                                  |
| Continuous          | s power dissipation                        |     |        |       |      |                                                                                                                         |
| P <sub>T</sub>      | Continuous power dissipation               |     | 350    |       | mW   | At full resolution, bit depth and speed.                                                                                |
| Electrostat         | ic discharge                               |     |        |       |      |                                                                                                                         |
| ESD <sub>HBM</sub>  | Electrostatic discharge HBM                |     | ± 2    |       | kV   | MIL-STD-883J                                                                                                            |
| ESD <sub>CDM</sub>  | Electrostatic discharge CDM                |     | ± 1000 |       | V    | JS-002-2018                                                                                                             |
| Temperatu           | re ranges and storage conditions           |     |        |       |      |                                                                                                                         |
| R <sub>THJP</sub>   | Junction to package thermal resistance     |     |        | 0.89  | °C/W |                                                                                                                         |
| TJ                  | Operating junction temperature             | -30 |        | 90    | °C   |                                                                                                                         |
| T <sub>BODY</sub>   | Package body temperature                   |     |        | 260   | °C   | IPC/JEDEC J-STD-020 <sup>(1)</sup>                                                                                      |
|                     | Number of reflow cycles                    |     |        | 3     |      | Due to the small pad pitch,<br>standard reflow process may<br>need to be adjusted to<br>achieve reliable solder result. |
| T <sub>dry</sub>    | Recommended dry bake temperature           | 105 |        | 125   | °C   | IPC/JEDEC J-STD-020 <sup>(1)</sup>                                                                                      |
| t <sub>DRY</sub>    | Recommended dry bake time                  | 8   |        | 24    | h    | 125 °C                                                                                                                  |
| MSL                 | Moisture sensitivity level                 |     | 3      |       |      | Represents a floor life time of 168 h.                                                                                  |
| $RH_{NC\_CSP}$      | Relative humidity (non-condensing) for CSP | 5   |        | 85    | %    |                                                                                                                         |
| RH <sub>NC_RW</sub> | Relative humidity (non-condensing) for RW  |     |        | 30    | %    | N <sub>2</sub> stocker conditions                                                                                       |

| Symbol                | Parameter                   | Min | Тур | Max | Unit   | Comments                             |
|-----------------------|-----------------------------|-----|-----|-----|--------|--------------------------------------|
| T <sub>STRG_CSP</sub> | Storage temperature for CSP | -40 |     | 85  | °C     |                                      |
| $T_{STRG_RW}$         | Storage temperature for RW  | 17  |     | 28  | °C     |                                      |
| $t_{STRG_{CSP}}$      | Storage time for CSP        |     |     | 1   | year   | According to MSL3                    |
| t <sub>STRG_RW</sub>  | Storage time for RW         |     |     | 3   | months | Refers to indicated date of packing. |

(1) The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices". Use of underfill is recommended to ensure board level reliability requirements are met if components are mounted on application PCB.

# 4 Electrical characteristics

Table 3: Electrical characteristics of Mira220

| Symbol                     | Parameter                                         | Conditions | Min       | Тур. | Max       | Unit |
|----------------------------|---------------------------------------------------|------------|-----------|------|-----------|------|
| Power suppli               | es                                                |            |           |      |           |      |
| VDD25                      | Analog and pixel supply voltage                   |            | 2.4       | 2.5  | 2.6       | V    |
| VDD18                      | I/O supply voltage                                |            | 1.70      | 1.80 | 1.90      | V    |
| VDD13A                     | Analog supply voltage                             |            | 1.25      | 1.35 | 1.45      | V    |
| VDD13D                     | Digital supply voltage                            |            | 1.25      | 1.35 | 1.45      | V    |
| VDD13P                     | MIPI, D-PHY and PLL supply voltage                |            | 1.25      | 1.35 | 1.45      | V    |
| I <sub>VDD25</sub>         | Analog and pixel supply current <sup>(1)</sup>    |            | -         | -    | 168       | mA   |
| IVDD18                     | I/O supply current <sup>(1)</sup>                 |            | -         | -    | 0.6       | mA   |
| Ivdd13A                    | Analog supply current <sup>(1)</sup>              |            | -         | -    | 21        | mA   |
| Ivdd13d                    | Digital supply current <sup>(1)</sup>             |            | -         | -    | 42        | mA   |
| I <sub>VDD13P</sub>        | MIPI, D-PHY and PLL supply current <sup>(1)</sup> |            | -         | -    | 6         | mA   |
| Digital I/O <sup>(2)</sup> |                                                   |            |           |      |           |      |
| VIH                        | High level input voltage                          |            | 0.7×VDD18 | -    | VDD18     | V    |
| VIL                        | Low level input voltage                           |            | VSS       | -    | 0.3×VDD18 | V    |
| Vон                        | High level output voltage                         |            | 0.8×VDD18 | -    | VDD18     | V    |
| Vol                        | Low level output voltage                          |            | VSSIO     | -    | 0.2×VDD18 | V    |
| t <sub>req_exp</sub>       | REQ_EXP pulse width <sup>(3)</sup>                |            | 10        | -    | -         | μs   |
| treq_frame                 | REQ_FRAME pulse width <sup>(3)</sup>              |            | 0.1       | -    | -         | μs   |
| I <sup>2</sup> C SDA SCL   |                                                   |            |           |      |           |      |
| VIH                        |                                                   |            | 0.7×VDD18 | -    | VDD18     | V    |
| VIL                        |                                                   |            | VSS       | -    | 0.3×VDD18 | V    |
| Reference clo              | ock                                               |            |           |      |           |      |
| fclk_in                    | CLK_IN frequency                                  |            | -         | 38.4 | -         | MHz  |
|                            | CLK_IN accuracy                                   |            | -         | -    | ±50       | ppm  |
| DC <sub>CLK_IN</sub>       | CLK_IN duty cycle                                 |            | 45        | 50   | 55        | %    |
| C-Cjitter,CLK_IN           | CLK_IN cycle-to-cycle jitter                      |            | -         | -    | 200       | ps   |
| trise/fall,CLK_IN          | Rise and fall transition time                     |            | -         | 10   | -         | ns   |

(1) Peak current. See application note AN001031 for current profiles.

(2) The section is not valid for CCI\_SDA and CCI\_SCL.

(3) See section 8.2.1.

**CIMU OSRAM** 

# 5 Typical operating characteristics

# 5.1 Electro-optical characteristics

Below are the typical electro-optical specifications of the Mira220, measured in typical conditions.

#### Table 4: Optical features of Mira220

| Parameter      | Value                    | Remark                                                                                                                                 |
|----------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Active pixels  | 1600 (H) × 1400 (V)      |                                                                                                                                        |
| Pixel pitch    | 2.79 × 2.79 µm²          |                                                                                                                                        |
| Optical format | 1/2.7"                   |                                                                                                                                        |
| Pixel type     | BSI global shutter       | With fixed pattern noise correction and reset (kTC) noise canceling by correlated double sampling (CDS) coupled with high sensitivity. |
| Shutter type   | Pipelined global shutter | Exposure of next image during readout of the previous image.                                                                           |

#### Table 5: Typical electro-optical characteristics

| Parameter                             | Value                    | Remark                                                                                                                                   |  |  |  |
|---------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Full well charge (FWC)                | 10800 e-                 | Linear range                                                                                                                             |  |  |  |
| Dark temporal noise (DTN)             | 7.0 e-                   |                                                                                                                                          |  |  |  |
| Dynamic range (DR)                    | 63.7 dB                  |                                                                                                                                          |  |  |  |
| SNRMAX                                | 40 dB                    |                                                                                                                                          |  |  |  |
| Shutter efficiency (1/PLS)            | 95 dB                    | 940 nm. Higher for visual spectrum.                                                                                                      |  |  |  |
| Dark current (DC)                     | 58 e-/s                  | 60 °C                                                                                                                                    |  |  |  |
| Color filters                         | RGB RGB-IR               |                                                                                                                                          |  |  |  |
| Supported lens chief ray angles (CRA) | 0° to 30°                | Extra wide acceptance angle of the<br>Mira220 pixel means any lens profile with<br>these CRA values would provide decent<br>performance. |  |  |  |
| Quantum efficiency (QE) mono          | 95 / 56 / 36 %           | 550 / 850 / 940 nm                                                                                                                       |  |  |  |
| Quantum efficiency (QE) RGB and RGBIR | 76 / 85 / 80 / 56 / 36 % | 450 / 530 / 605 / 850 / 940 nm                                                                                                           |  |  |  |

# 5.2 Spectral characteristics



Figure 1: Quantum efficiency of the Mira220 mono and color

# 5.3 Functional characteristics

**Table 6: Functional characteristics** 

| Parameter                 | Value                                                                                                                                      | Remark                                                                        |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| Region of interests (ROI) | Flexible ROI setting in addition to three<br>preconfigured window sizes<br>2.2 MP (1600 x 1400)<br>1.4 MP (1280 x 1120)<br>VGA (640 x 480) | See Section 8.2.3.                                                            |  |  |  |
| Bit depth                 | 12-bit<br>10-bit<br>8-bit                                                                                                                  | See Section 8.4.2.                                                            |  |  |  |
| Timing generation         | On-chip                                                                                                                                    | Possibility to control exposure time through external pin.                    |  |  |  |
| Programmable registers    | Sensor parameters. E.g. Window coordinates, timing parameters, and exposure time.                                                          | See Section 8.2, 8.3.3.                                                       |  |  |  |
| Power consumption         | 168 mW   Active 30fps <sup>(1)</sup><br>40 mW   Idle<br>4 mW   Sleep                                                                       | Typical power consumption at full resolution.                                 |  |  |  |
| Data interface standard   | MIPI CSI-2<br>DPHY                                                                                                                         |                                                                               |  |  |  |
| MIPI outputs              | 2 Data<br>1 Clock                                                                                                                          | Fewer outputs enabled results in a reduced frame rate.                        |  |  |  |
| Output interface bit rate | 1.5 Gbit/s                                                                                                                                 | Per data channel (maximum)                                                    |  |  |  |
| Frame rates               | 90 fps                                                                                                                                     | At full resolution and bit depth.<br>Faster rates possible with<br>windowing. |  |  |  |
| Black sun protection      | Yes                                                                                                                                        |                                                                               |  |  |  |
| Temperature sensor        | Yes                                                                                                                                        |                                                                               |  |  |  |
| Context switching         | Two register contexts                                                                                                                      | The system allows on the fly context switching.                               |  |  |  |

(1) External power management is required to achieve this power consumption. See application note AN001027.

# 6 Functional description

This chapter gives a functional description of the sensor, its architecture, operating modes and readout format.

# 6.1 Sensor architecture

Mira220 is a high-speed global shutter CMOS image sensor for NIR consumer applications. It is a stacked sensor with optimized silicon layer for pixels (sensor layer) and readout/digital (readout layer). The image array consists of 2.79  $\mu$ m global shutter pixels and has a resolution of 1600 x 1400 pixels. Figure 2 shows a high-level representation of the Mira220.

The sensor is compliant with the MIPI CSI-2 v1.3 protocol interface and the D-PHY v1.2 physical layer specifications. It transfers the data over two lanes to the host processor. Changing parameters of the sensor goes through the CCI built-in interface.

A programmable on-chip sequencer generates all internal exposure and readout timings. External triggering and exposure programming is possible.

The on-chip PLL transforms a low-frequency CMOS input clock into all high-frequency clocks needed to operate the sensor.

The sensor has special features to control other components in the system. It has dedicated outgoing signals for system synchronization between the image sensor itself and an external illumination component (i.e. a NIR laser).



**CIMUI OSRAM** 

Figure 2: Sensor architecture block diagram

## 6.2 Pixel array

Figure 2 shows the pixel array of Mira220. The resolution of the active pixel array is 1600 (H) x 1400 (V) pixels. However, the physical resolution of the complete pixel array is 1642 (H) x 1464 (V) pixels. Therefore, the pixel array can be split up in two parts: Active pixels and buffer pixels (around the active array). The buffer pixels are not accessible for readout. Micro-lenses are placed on the pixels for improved quantum efficiency.

# 6.3 Column ADC

The column ADC converts the analog pixel value into a digital value.

## 6.3.1 Black sun protection

The black sun protection circuit is used to avoid dark spots in the image, caused by high light levels in extremely oversaturated scenes.

# 6.4 Data processing

The data processing block performs digital operations on the pixel data. It is the complete path from reading the data from the ADC output memories up to the inputs of the MIPI block.

Among the different features, the data processing has implemented the following:

## 6.4.1 Digital correlated double sampling

The sensor supports digital correlated double sampling DCDS. If enabled the DCDS logic subtracts the value corresponding to reset level of the pixel from the value corresponding to signal level of the pixel in the digital domain. For details, please see section 8.4.3 on how to configure the sensor.

#### 6.4.2 Row noise correction

The row noise generated by common references in the analog readout path is accurately measured on a row-by-row basis. Such noise is dynamically subtracted from all the pixels of the same row in digital domain. This operation results in a row noise value that is smaller than the read noise. Please see section 8.4.4 for information on how to configure the sensor.

#### 6.4.3 Defect pixel detection and correction

The sensor supports the detection of defect pixels using neighboring pixels as reference and applies a correction to that pixel. Please see section 8.4.5 for details on configuration.

#### 6.4.4 Image statistics

The image sensor can output the histogram and number of clipped pixels to reduce the post-processing load on any connected processor. See section 8.5.3.

# 6.5 CSI-2 data protocol handling & D-PHY communication interface

Data is transmitted off-chip according to the CSI-2 data protocol, as defined by MIPI in document [CSI-2-v1.3]. The physical layer is a D-PHY interface [DPHY-v1.2] with two data lanes and one clock lane.

## 6.6 Sequencer

The on-chip sequencer will generate all required control signals to operate the sensor from only a few external control signals. This sequencer can be activated and programmed through the CCI interface.

Among the different features, the sequencer has implemented the following:

- CCI protocol and register bank management
- Exposure and frame timing generation based on external inputs or internal settings
- Windowing/cropping
- Mirroring and flipping

# 6.7 CCI interface

The sensor operation must be configured by uploading register settings. These static register values control the behavior of the on-chip sequencer, analog and mixed-signal blocks. To write and read register settings, the CCI (Camera Control Interface) interface is used. This interface is fully compliant with CCI standard (refer to [CSI-2-v1.3]). The CCI consists of two wires, SCL and SDA, carrying the clock and data respectively. The Mira220 image sensor always operates as the CCI slave. See section 7.4.

## 6.8 PLL

Various clock frequencies are required internally to operate the sensor. These are derived from a single input clock using an on-chip PLL. See also section 7.3.

## 6.9 Temperature sensor

An on-chip thermal sensor is included in the readout layer. The temperature data can be read out through the CCI interface. See section 8.5.4 for more information on temperature calibration and 8.5.5 with OTP fields storing temperature calibration data.

# 6.10 OTP memory

A non-volatile, One Time Programmable memory is included on-chip. Part of the memory is used by ams OSRAM to store a unique device ID and sensor calibration data, another part is available to the customer. See section 8.5.5.

# 6.11 Illumination trigger

The ILLUM\_TRIGGER output pin allows synchronizing an external light source to the exposure of the pixel matrix. Please see section 8.5.1 for further details.

# 6.12 Low power options

Multiple, fully configurable, power modes are available to minimize power consumption when operating and in idle. See sections 7.7 and 8.5.7.

# 7 Operating the sensor

# 7.1 **Power supplies**

## 7.1.1 External power supplies

To power the sensor, three externally generated supplies are required. It is advisable to use sufficient bulk (at the regulators) and local (at the sensor pins) decoupling for optimal performance. In case of multiple pins for the same supply, local decoupling is needed for each pin. For optimal noise performance, it is advised to keep the analog and digital ground nets separated and connect them together as close as possible to the external supply regulators.





## 7.1.2 Biasing (On-Chip Regulators)

Operating the pixel and readout layer requires multiple supply levels. These levels can be generated using on-chip regulators. The regulator output voltages are controlled using the CCI interface.

Connections have to be made on PCB level for all supplies. Each net of a supply regulator requires to be decoupled by a capacitor. The capacitor value and minimum voltage rating is shown in Figure 4. It is recommended to use X5R-rated ceramic capacitors to ensure temperature stability. To obtain an accurate bias reference in the sensor, an external bias resistor of 12 k $\Omega$  must be placed between R\_EXT and ground. It is advised to use a low tolerance (± 0.1%) and low temperature coefficient (100 ppm/°C or better) resistor.

Figure 4 shows the voltage regulator and the bias connections.

#### Attention:

F

The external supply VDD25 is connected to VDD25A, VDD25R and VDDINT\_1. Hence, the internally generated voltages are bypassed. Step 7 in the power-up sequence disables these internal voltages.



Figure 4: Regulator decoupling and biasing

# 7.2 Power-up/down sequence

A specific order and timing must be applied to the sensor supplies to guarantee a proper power-up/power-down sequence and to avoid peak currents. Figure 5 shows the power-up sequence. The power-down sequence is the inverse of the power-up sequence and is shown in Figure 6.

#### 7.2.1 Power-up sequence

- **1.** Apply 2.5 V power supply (VDD25). Supply ramp up should be greater than 30 μs. Allow the bandgap reference to settle (i.e. at least 600 μs).
- 2. Apply 1.35 V power supply (VDD13A, VDD13D and VDD13P). Supply ramp up time should be greater than 30 µs. Allow the supply to finish ramping up.
- **3.** Apply 1.8 V power supply (VDD18). Supply ramp up time should be greater than 30 μs. Allow the supply to finish ramping up.
- 4. Apply the external clock on the CLK\_IN clock input pin.
- 5. Release the hard reset signal on the ARST\_N input pin. I<sup>2</sup>C communication is now available.
- 6. Wait for the PLL to lock. Check the lock bit in the read-only register **PLL\_STATUS** through I<sup>2</sup>C read to verify that the PLL has locked.
- **7.** Disable three internal LDOs by writing via I<sup>2</sup>C the value 0x02 to address 0x401E and the value 0x3B to address 0x4038.
- **8.** Restore the LDO and gain calibration values stored in OTP, see section 8.5.5 and application note AN001030.
- **9.** The sensor is now in its default state. The sensor can now be configured for image capture and pixel data output through CCI uploads.

#### Attention:

During startup, there is a min startup current requirement of 350 mA on the VDD25 pin in the time between the 2.5 V supply ramp up and 1.35 V supply ramp up. An alternative startup sequence is possible if this current requirement cannot be met. More details on this alternative sequence can be seen in datasheet DS000642.

#### Figure 5: Power-up sequence



#### 7.2.2 Power-down sequence

- 1. Stop all image capture processes.
- 2. Assert the hard reset signal on the ARST\_N input pin.
- 3. The external clock can now be disabled on the CLK\_IN input pin.
- 4. Disable 1.8 V power supply (VDD18). The supply ramp down should be greater than 30 µs.
- 5. Disable 1.35 V power supply (VDD13A, VDD13D and VDD13P). The supply ramp down should be greater than 30  $\mu$ s.
- 6. Disable 2.5 V power supply (VDD25). The supply ramp down should be greater than 30 µs.

Figure 6: Power-down sequence



# 7.3 PLL and clocking

The sensor has two CMOS clock inputs: CCI\_SCL and CLK\_IN. CCI\_SCL is part of the CCI used to configure the sensor. All other internal sensor clocks are derived from the PLL, taking CLK\_IN as input clock.

Refer to section 4 for the electrical specifications of the input clocks.

| Register          | Address   | Position | Description                             |
|-------------------|-----------|----------|-----------------------------------------|
|                   | 0,450,000 | [0]      | Flag indicating PLL lock status         |
| FLL_STATUS        | 0x50DC    | [1]      | Flag indicating reference clock missing |
| PLL_LOCK_CNT_RST  | 0x5013    | [0]      | 1: Resets the PLL lock count            |
| PLL_LOCK_RISE_CNT | 0x5015    | [7:0]    | Number of PLL lock rising edges         |
| PLL_LOCK_FALL_CNT | 0x5016    | [7:0]    | Number of PLL lock falling edges        |

#### Table 7: PLL registers

# 7.4 CCI and register access

#### 7.4.1 CCI interface

The sensor operation is configured by uploading register settings. These static register values control the behavior of the sequencer on the chip, but also of all the analog and mixed-signal blocks. To write and read register settings the CCI (Camera Control Interface) interface is used. A CCI interface is derived from the I<sup>2</sup>C interface specification [I2C-v6]. It supports a subset of commands using 16-bit sub-addresses. The sensor supports both Standard Mode (100 kbit/s) and Fast Mode (400 kbit/s).

Each register contains an 8-bit word. If a register is not fully defined (e.g. a 6-bit register occupying an 8-bit word space), undefined bits are not writable (writing to them does not return an error but has no effect) and return '0' when read back.

The sensor supports both single read/write and burst read/write.

The CCI has been defined according to the MIPI CSI-2 specification. For more information and electrical specifications, see document [CSI-2-v1.3].

Different conditions on the CCI interface lines are explained in Figure 7. The figures are taken from [I2C-v6] and are given here only as reference.

Figure 7: CCI interface conditions



- S = Start Condition, Sr = Repeated Start Condition The master pulls the SDA line low, while SCL stays high, indicating it is ready to send data.
- A = Acknowledge (ACK), N = Not Acknowledge (NACK)A (N)ACK status is signaled by either a master or a slave device, depending on the scenario:
  - The master will check the (N)ACK after sending the slave address or register address.
     The master releases the SDA line and checks whether the slave pulls it low (ACK) or not (NACK). In case of a NACK, the SDA line will be high due to the pull-up.
  - The slave will check the (N)ACK after sending read-back register data to the master. The slave releases the SDA line and checks whether the master pulls it low (ACK) or not (NACK). In case of a NACK, the SDA line will be high due to the pull-up.

- **CIMUN OSRAM**
- Note that a NACK is used to terminate all read transactions and is expected. For write transactions, a NACK is the result of a possible issue or miscommunication with the slave device (wrong slave address, not powered on ...).
- P = Stop Condition
   The master releases the SDA line, while SCL stays high, meaning no more byte transfer will take place in this access.
- R/W bit: The bit after the slave address. '0' indicates a write, '1' indicates a read.

Figure 8 shows the different CCI write and read transactions to or from device slave\_addr and register reg\_addr. The master to slave direction is shaded. In case of a burst transaction, the reg\_addr is automatically incremented after every ACK.

#### Figure 8: CCI transaction command format

| Single \                       | Write              |        |                |   |               |      |                 |     |           |     | Master controls SDA line |
|--------------------------------|--------------------|--------|----------------|---|---------------|------|-----------------|-----|-----------|-----|--------------------------|
| S                              | slave_addr[6:0]    | 0 A    | reg_addr[15:8] | Α | reg_addr[7:0] | A    | data[7:0]       | A P |           |     | Slave controls SDA line  |
|                                |                    |        |                |   |               |      |                 |     |           |     |                          |
| Burst V                        | Vrite (shown for 2 | bytes) |                |   |               |      |                 |     |           |     |                          |
| S                              | slave_addr[6:0]    | 0 A    | reg_addr[15:8] | A | reg_addr[7:0] | A    | data[7:0]       | A   | data[7:0] | A P |                          |
|                                |                    |        |                |   |               |      |                 |     |           |     |                          |
| Single I                       | Read               |        |                |   |               |      |                 |     |           |     |                          |
| S                              | slave_addr[6:0]    | 0 A    | reg_addr[15:8] | A | reg_addr[7:0] | A Sr | slave_addr[6:0] | 1 A | data[7:0] | N P | ]                        |
|                                |                    |        |                |   |               |      |                 |     |           |     |                          |
| Burst Read (shown for 2 bytes) |                    |        |                |   |               |      |                 |     |           |     |                          |
| S                              | slave_addr[6:0]    | 0 A    | reg_addr[15:8] | A | reg_addr[7:0] | A Sr | slave_addr[6:0] | 1 A | data[7:0] | А   | data[7:0] N P            |

#### 7.4.2 CCI slave address

Every CCI slave has a unique 7-bit device address. The slave address of Mira220 is defined by the level on CCI\_ADDR1 and CCI\_ADDR0 input pins. This allows connecting up to four Mira220 sensors on a single CCI bus.

It is also possible to execute a global write to all Mira220 sensors on the CCI bus.

The 7-bit slave addresses are given in the table below with  $X_1$  the level on pin CCI\_ADDR1 and  $X_0$  the level on pin CCI\_ADDR0.

#### Table 8: CCI slave address

| Action       | Slave address (7-bit) + R/W bit      |
|--------------|--------------------------------------|
| Local write  | 10101X <sub>1</sub> X <sub>0</sub> 0 |
| Local read   | 10101X1X01                           |
| Global write | 10100010                             |
| Global read  | Not allowed                          |
|              |                                      |

# 7.5 Reset

The sensor has an asynchronous reset input pin (ARST\_N) and an asynchronous reset register (**CMD\_SOFT\_RESET**).

When combined, they have the following function:

- 1. ARST\_N: Reset the entire sensor when low (active-low). This is considered a hard reset.
- CMD\_SOFT\_RESET: Reset the entire sensor, except the CCI interface and register bank when high. This is considered a soft reset.

As long as RST\_N is high, all registers retain their value when **CMD\_SOFT\_RESET** is high. The soft reset register is self-clearing.

Table 9: Reset configuration register

| Register       | Address | Position | Description    |
|----------------|---------|----------|----------------|
| CMD_SOFT_RESET | 0x0040  | [0]      | Software reset |



## 7.6 Controlling exposure and readout

This section explains the important concepts of the frame-timing model.

#### 7.6.1 Basic frame timing

During operation, the sensor can be in any of the following states:

- **RESET**: Asynchronous sensor reset is low, disabling the sensor entirely.
- IDLE: Sensor performs no function as it awaits external requests.
- **EXPOSURE**: Light is being integrated in the pixels.
- **GLOB**: Closing global shutter by sampling all integrated pixel values.
- **READOUT**: Reading out the acquired frame plus metadata and mandatory overhead.

A distinction can be made between two basic frame timing operations (sequential and pipelined operation), as detailed in the following two sections.

#### 7.6.2 Sequential operation

In sequential operation, the sensor goes through a sequential succession of EXPOSURE – GLOB – READOUT to grab a single image, as indicated in the figure below. When such a cycle is completed, the sensor is back in the IDLE state waiting for a new internal or external trigger.





## 7.6.3 Pipelined operation

The main property of pipelined operation is that the sensor can be in the EXPOSURE state and READOUT state at the same time. This basically means that the readout of frame N can be busy while the EXPOSURE state of frame N+1 has already started. The EXPOSURE can fully or partially overlap with a READOUT state.





When exiting IDLE state, the first EXPOSURE period starts. As in the sequential operation, this flows into a GLOB state, which in its turn starts the READOUT of a frame. Depending on the sensor control or configuration (see section 7.7 for details and options), a new EXPOSURE may start when the readout is still busy.

At the end of the READOUT period, there are two options:

- No new EXPOSURE was started. The sensor will return to IDLE.
- A new EXPOSURE has started. The sensor will wait until this new EXPOSURE finishes, before moving back to GLOB, which will always trigger a new READOUT.

## 7.6.4 Shutter lag

The shutter lag is the delay between the start and end of the **EXPOSURE state** and the start and end of the **actual exposure**. The actual exposure is the time where the sensor is actually capturing and integrating light. Figure 11 illustrates the shutter lag.



Figure 11: State chart: sequential operation with shutter lag

The distinction is important because the EXPOSURE state is the direct response of external control (through sensor I/O request or register settings), but it is the actual exposure that really matters to the user.

In the remainder of the document, when the concept of exposure or exposure time is mentioned, it will always be about the **EXPOSURE state**, unless stated otherwise. The reader should always bear in mind that the **actual exposure** is delayed with respect to this EXPOSURE state due to the shutter lag mechanism. The shutter lag is always present at the end of the EXPOSURE period, since part of the actual exposure time will always extend into the GLOB state. This is sometimes called "exposure overlap".

Figure 11 shows the shutter lag under sequential operating conditions only, but note that the shutter lag is present in all operation modes. The shutter lag at the start of the exposure is 2.015  $\mu$ s (rising edge exposure – actual start) and the shutter lag at the end of exposure is 20.11  $\mu$ s (falling edge exposure – actual end). As a result, the length of the actual exposure time is larger than the length of the EXPOSURE state (the exposure overlap is added).

# 7.7 Sensor control modes

Stepping through the state charts in Figure 9 and Figure 10 can be externally controlled with the sensor inputs REQ\_EXP and REQ\_FRAME and with register settings (which will be detailed in further sections). This can be done in two different modes: Master mode or slave mode.

- Master Exposure Control Mode Sensor controls its own timing.
- Slave Exposure Control Mode Timing is controlled by an external component.

Register **IMAGER\_STATE** can be used to stop any active sensor operation and return the sensor to the IDLE state, waiting for new requests. This register is a good way to get the sensor out of streaming mode without asserting any reset.

| Register            | Address | Position | Description                                                                               |
|---------------------|---------|----------|-------------------------------------------------------------------------------------------|
| IMAGER_STATE 0x1003 |         | [5:0]    | 0x02: Stop at row boundary (internal counters are stopped and FSM switches to IDLE state) |
|                     | 0 4000  |          | 0x04: Stop at frame boundary                                                              |
|                     | 0x1003  |          | 0x08: Slave exposure control mode                                                         |
|                     |         |          | 0x10: Master exposure control mode                                                        |
|                     |         |          | 0x3F: Force imaging FSM to IDLE state                                                     |
| POWER_MODE 0x0043   |         | [0]      | Sleep power mode enable                                                                   |
|                     | 0x0043  | [1]      | Idle power mode enable                                                                    |
|                     |         | [2]      | System clock enable                                                                       |
|                     |         | [3]      | SRAM clock enable                                                                         |

Table 10: Exposure control and readout configuration registers

The idle power mode disables certain blocks, holds all settings in the sequencer and keeps the MIPI interface activated. While the sleep power mode also disables the PLL and MIPI. Figure 12 shows how to switch between the several power modes.

#### Figure 12: Power mode switch



#### 7.7.1 Master mode

In Master Exposure Control Mode, the frame and exposure timings of the sensor are pre-programmed into the sensor. The sensor runs autonomously after the start trigger based on these programmed settings. The sensor can grab a fixed amount of frames or take images continuously. No input pins are used in this mode. See section 8.2 for details on the exposure time and frame time registers.

Master Exposure Control Mode can perform sequential readout, in which a complete expose-sample-readout cycle is finished before the next one is started, and can perform pipelined readout, in which readout is done while the next frame is being captured by the pixel array (exposure).

#### Figure 13: Master exposure control mode



#### Table 11: Master mode configuration registers

| Register        |        | Address | Position | Description                                                |  |
|-----------------|--------|---------|----------|------------------------------------------------------------|--|
| IMAGER_RUN      |        | 0x10F0  | [0]      | Start the image acquisition (self-clearing) <sup>(1)</sup> |  |
| IMAGER_RUN_CON  | Г      | 0x1002  | [2]      | Enable continuous running, not limited to number of frames |  |
| NR OF EDAMES(2) | [7:0]  | 0x10F2  | [7:0]    | - Number of frames to capture                              |  |
| ND_OF_FRAMES    | [15:8] | 0x10F3  | [7:0]    |                                                            |  |

(1) Stop the acquisition with IMAGER\_STATE. After NB\_OF\_FRAMES, the sensor will also go to the IDLE state.

(2) Only in Sequential Readout Operation. Parameter ignored in Pipelined Readout Operation.

#### 7.7.2 Slave mode

In Slave Exposure Control Mode, the frame and exposure timings of the sensor are being completely controlled from the outside. Slave Exposure Control Mode can perform sequential readout, in which a complete expose-sample-readout cycle is finished before the next one is started, and can perform pipelined readout, in which readout is done while the next frame is being captured by the pixel array (exposure).

In Slave Exposure Control Mode, two methods of operation are possible: Exposure and readout are controlled by two separate pins or by a single pin. This last method will be referred to as 'single pin exposure'. When using two pins, a rising edge on the REQ\_EXP pin triggers exposure, while a rising edge on the REQ\_FRAME pin triggers the readout.



Figure 14: Two pins slave exposure

In single pin exposure, a rising edge on the REQ\_EXP pin triggers exposure, while a falling edge on the REQ\_EXP pin triggers the readout.





The following registers configure the slave mode.

| Table 12 | : Slave | mode | configuration | register |
|----------|---------|------|---------------|----------|
|----------|---------|------|---------------|----------|

| Register      | Address | Position | Description                                                                    |
|---------------|---------|----------|--------------------------------------------------------------------------------|
| EXT_EVENT_SEL | 0x1001  | [6]      | 0: REQ_EXP starts readout (single pin exposure)<br>1: REQ_FRAME starts readout |
| CMD_REQ_EXP   | 0x0041  | [0]      | Same function as REQ_EXP pin                                                   |
| CMD_REQ_FRAME | 0x0042  | [0]      | Same function as REQ_FRAME pin                                                 |

The register bits **CMD\_REQ\_EXP** and **CMD\_REQ\_FRAME** are equivalent to their sensor pin counterparts REQ\_EXP and REQ\_FRAME. The sensor REQ\_EXP and REQ\_FRAME pins can therefore be tied low to use the register uploads for frame timing control. By using these registers together with **CMD\_SOFT\_RESET**, the sensor can in theory be controlled with just the CCI interface plus 2 timing inputs (ARST\_N and CLK\_IN) at the cost of a slightly reduced timing accuracy (because the registers are loaded via the CCI interface).

# 7.8 IO drive strength

All digital IO and CCI interface pins have a programmable drive strength.

| Table | 13: | Sensor | I/O | drive | strength |
|-------|-----|--------|-----|-------|----------|
|-------|-----|--------|-----|-------|----------|

| Register       | Address | Position | Description                                                                                                                                                                   |
|----------------|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DRIVE_STRENGTH | 0x0012  | [1:0]    | 0x0: 2 mA drive strength digital output.<br>0x1: 4 mA drive strength digital output.<br>0x2: 8 mA drive strength digital output.<br>0x3: 12 mA drive strength digital output. |
|                |         | [2]      | 0x0: 4 mA sink current CCI interface.<br>0x1: 20 mA sink current CCI interface.                                                                                               |
# 8 Configuring the sensor

# 8.1 Operation modes

The sensor supports different operation modes, listed per category in Table 14 allowing for a large number of possible combinations.

| Table 14: Operation modes | nodes |
|---------------------------|-------|
|---------------------------|-------|

| Mode                    | Description                                                |  |  |  |
|-------------------------|------------------------------------------------------------|--|--|--|
| Power modes             |                                                            |  |  |  |
| POW.1                   | Hard reset mode                                            |  |  |  |
| POW.2                   | Sleep mode                                                 |  |  |  |
| POW.3                   | Idle mode                                                  |  |  |  |
| POW.4                   | Active mode                                                |  |  |  |
| Data multiplexing modes |                                                            |  |  |  |
| MUX.1                   | Single data lane MIPI                                      |  |  |  |
| MUX.2                   | Two data lanes MIPI                                        |  |  |  |
| Sensor control modes    |                                                            |  |  |  |
| SEN.1                   | Master exposure control mode                               |  |  |  |
| SEN.2                   | Slave exposure control mode                                |  |  |  |
| Image modes             | Preconfigured ROI modes. Custom ROIs supported. See 8.2.3. |  |  |  |
| IMG.1                   | Full ROI; 1600 (H) x 1400 (V)                              |  |  |  |
| IMG.2                   | 1.4 MP resolution (central ROI; 1280 (H) x 1120 (V))       |  |  |  |
| IMG.3                   | VGA resolution (central ROI; 640 (H) x 480 (V))            |  |  |  |
| Bit depth               |                                                            |  |  |  |
| ADC.1                   | 12-bit A/D conversion                                      |  |  |  |
| ADC.2                   | 10-bit A/D conversion                                      |  |  |  |
| ADC.3                   | 8-bit A/D conversion                                       |  |  |  |
| Frame rate              | Maximum frame rate is dependent on ROI selection           |  |  |  |
| SPEED.1                 | Max fps 90 fps IMG.1    110 fps IMG.2    255 fps IMG.3     |  |  |  |
| SPEED.2                 | 60 fps                                                     |  |  |  |
| SPEED.3                 | 30 fps                                                     |  |  |  |
| SPEED.4                 | 15 fps                                                     |  |  |  |

Information:

8

The information in the section above needs to be aligned with the sensor configuration as provided in the common upload file. Make sure to check the latest version of the common upload file on the ams OSRAM product page under Tools & Resources or ask the FAE.

# 8.2 Configuring readout and exposure

# 8.2.1 Frame time and exposure time

The frame time  $T_{frame}$  is defined as (the frame rate is the inverse of  $T_{frame}$ ):

Equation 1:

# Slave exposure mode

 $T_{frame} > t_{GLOB} + T_{CLK_{IN}} * ROW_{LENGTH} * VSIZE$ 

# Master exposure mode

 $T_{frame} = T_{CLK_{IN}} * ROW_{LENGTH} * (VSIZE + VBLANK)$ 

With,

| t <sub>GLOB</sub>   | : Glob time is 1928 × T <sub>CLK_IN</sub>       |
|---------------------|-------------------------------------------------|
| T <sub>CLK_IN</sub> | : Period of reference clock CLK_IN              |
| ROW_LENGTH          | : Row length (see section 8.2.2)                |
| SIZE                | : Numbers of rows in window (see section 8.2.3) |
| VBLANK              | : Number of blanking rows                       |

In Slave Exposure Mode, the frame rate is controlled by the external pin REQ\_EXP. The minimum pulse period is the lower limit of  $T_{frame}$ .

In Master Exposure Mode, the frame rate can easily be adjusted with the **VBLANK** parameter. The operation mode is always pipelined except if you make **VBLANK** long enough to have a sequential operation. Equation 2 shows the minimal **VBLANK**, exposure time and the maximal exposure time in Master Exposure Mode.

IMUI OSRAM

**Equation 2:** 

$$VBLANK_{min} = \left[\frac{t_{GLOB}}{T_{CLK\_IN} * ROW\_LENGTH}\right] + 11$$

 $t_{EXP} = EXP\_TIME * T_{CLK\_IN} * ROW\_LENGTH$ 

 $t_{EXP,max} = T_{frame} - t_{GLOB}$ 

Table 15: Frame time configuration registers

| Register                  |                    | Address | Position | Description                                                                                  |
|---------------------------|--------------------|---------|----------|----------------------------------------------------------------------------------------------|
|                           | [7:0]              | 0x100C  | [7:0]    | Experience time in row longths                                                               |
|                           | [15:8] 0x100D [7:0 |         | [7:0]    |                                                                                              |
|                           | [7:0]              | 0x1012  | [7:0]    | Vertical blanking in row lengths                                                             |
| VDLANK                    | [15:8]             | 0x1013  | [7:0]    |                                                                                              |
| EXT_EXP_PW_SEL            |                    | 0x1001  | [0]      | 0: Length of exposure with external pulse width 1: Length of exposure with EXP_TIME register |
|                           | [7:0]              | 0x10D0  | [7:0]    | Sets the delay between request for exposure and actual                                       |
| [15:8] 0x10D1 [7:0] 7.6.4 | 7.6.4).            |         |          |                                                                                              |

Figure 16: Delay between REQ\_EXP and actual exposure in single pin slave exposure mode including shutter lag



| ROI resolution | Frame rate | VBLANK[15:0] |
|----------------|------------|--------------|
|                | 90         | 0x0016       |
| 2.24 MD        | 60         | 0x02DD       |
| 2.24 IVIF      | 30         | 0x0B32       |
|                | 15         | 0x1BDD       |
|                | 110        | 0x002B       |
| 4.4 MD         | 60         | 0x03F5       |
| 1.4 MP         | 30         | 0x0C4A       |
|                | 15         | 0x1CF5       |
|                | 255        | 0x0015       |
|                | 60         | 0x0675       |
| VGA            | 30         | 0x0ECA       |
|                | 15         | 0x1F75       |

### Table 16: Pre-defined frame rate configurations with minimum ROW\_LENGTH of 304



### Information:

It is not possible to increase the frame rate by reducing ROI horizontal dimension (amount of columns).

# 8.2.2 Row length

Table 17: Row length configuration registers

| Register   |        | Address | Position | Description                                                    |
|------------|--------|---------|----------|----------------------------------------------------------------|
|            | [7:0]  | 0x102B  | [7:0]    | Sate the duration of the row length in cleak evalue of CLK. IN |
| ROW_LENGTH | [15:8] | 0x102C  | [7:0]    |                                                                |

The row length defines the line rate of the sensor. It is programmed in number of CLK\_IN cycles with the **ROW\_LENGTH** register. Changing this value has an impact on all settings that are expressed in row lengths, for example: exposure time, blanking time, readout speed, illumination trigger, etc.

The row length has a minimum value because a number of processes in the sensor need to be completed within one row length. The minimum row length is 304 when both D-PHY lanes are running at 1.5 Gbit/s per lane. The maximal row length value is only limited by the size of the 16-bit register.

When the sensor is configured to use only one D-PHY lane then the row length should be doubled. In addition, the row length should be changed when a slower D-PHY data rate is preferred, see section 8.3.4.

# 8.2.3 Region of interest (Windowing or Cropping)

The windowing function is available in both vertical and horizontal directions. The only limitation in horizontal direction is that the window is around the centerline of the active pixel array. See Figure 18 for a graphical explanation. See also section 8.5.7 for power saving options in reduced Region of Interest (ROI).

Up to three vertical regions can be defined as shown in Figure 19. All regions must have the same width and should not overlap. The different regions are streamed out as a single image.



### Figure 17: Windowing example



Figure 18: Windowing configuration parameters (Single ROI)





### Figure 19: Windowing configuration parameters (Multi ROI)



### Table 18: Windowing configuration registers

| Register   |         | Address | Position | Description                                                        |
|------------|---------|---------|----------|--------------------------------------------------------------------|
|            | [7:0]   | 0x1087  | [7:0]    | [10:0] – VSIZE1                                                    |
| VSIZE      | [15:8]  | 0x1088  | [7:0]    | Number of rows in window 1                                         |
|            | [23:16] | 0x1089  | [7:0]    | [21:11] – VSIZE2<br>Number of rows in window 2 (put 0 if not used) |
|            | [31:24] | 0x108A  | [7:0]    | [32:22] – VSIZE3                                                   |
|            | [32]    | 0x108B  | [0]      | Number of rows in window 3 (put 0 if not used)                     |
|            | [7:0]   | 0x107D  | [7:0]    | [10:0] – VSTART1                                                   |
| VSTART     | [15:8]  | 0x107E  | [7:0]    | Start row of window 1                                              |
|            | [23:16] | 0x107F  | [7:0]    | [21:11] – VSTART2<br>Start row of window 2 (put 0 if not used)     |
|            | [31:24] | 0x1080  | [7:0]    | [32:22] – VSTART3                                                  |
|            | [32]    | 0x1081  | [0]      | Start row of window 3 (put 0 if not used)                          |
|            | [7:0]   | 0x2008  | [7:0]    | Number of a large in window ( )                                    |
| HSIZE      | [9:8]   | 0x2009  | [1:0]    | <ul> <li>Number of columns in window / 2</li> </ul>                |
|            | [7:0]   | 0x200A  | [7:0]    | Chart column of window / 2                                         |
| HƏTAKI -   | [9:8]   | 0x200B  | [1:0]    | - Start column of window / 2                                       |
|            | [7:0]   | 0x207D  | [7:0]    | Number of columns is window (2.2.40175)                            |
| MIPI_HSIZE | [15:8]  | 0x207E  | [7:0]    |                                                                    |

### Table 19: Pre-defined window configurations

| Predefined ROI         | VSIZE1 | VSTART1 | HSIZE | HSTART | MIPI_HSIZE |
|------------------------|--------|---------|-------|--------|------------|
| 2.24 MP<br>1600 x 1400 | 1400   | 0       | 800   | 0      | 1600       |
| 1.4 MP<br>1280 x 1120  | 1120   | 140     | 640   | 80     | 1280       |
| VGA<br>640 x 480       | 480    | 460     | 320   | 240    | 640        |

# 8.2.4 Mirroring and flipping

The sensor is able to read from top to bottom, left to right or any other combination as shown in Figure 21. The default frame orientation (includes 180° rotation due to lens) is depicted in Figure 20.

### Figure 20: Frame orientation for default mode



1 A normally orientated letter "F" in the scene.

2 How it projects onto the sensor (includes the point-mirroring of the lens). The view is from the top of the sensor (no pins). The red arrow shows the readout order when mirror and flip is disabled. The start of the red arrow is pixel (0, 0).

3 What the sensor outputs.

### Table 20: Mirroring and flipping configuration registers

| Register             | Address | Position | Description                                                    |
|----------------------|---------|----------|----------------------------------------------------------------|
| HFLIP                | 0x209C  | [0]      | Horizontal mirroring enable                                    |
| VFLIP <sup>(1)</sup> | 0x1095  | [0]      | Vertical flip enable                                           |
| BIT_ORDER            | 0x2063  | [0]      | 0: Normal<br>1: Reversed order, MSB becomes LSB and vice versa |

(1) When using multiple ROI's, only vertical flip within the ROI. The order of ROI's is not changed.

### Figure 21: Mirroring and flipping



# 8.2.5 Context switching

Selected registers related to exposure and readout can be set to define two different modes of operation or contexts. Switching between the two contexts can happen on the fly. The registers in Table 21 control the mechanism.

When dynamic switching is disabled, the selection of a different context will take place right away after programming **CONTEXT\_SEL**[0]. When dynamic switching is enabled, **CONTEXT\_SW\_SEL** will control when the changes are executed either before start-of-integration (SOI) or at end-of-integration (EOI).

#### Figure 22: Context switching procedure



1 Dynamic switching enabled, **EXP\_TIME** on SOI and **HFLIP** on EOI. The effective exposure will change on the next SOI because an exposure time bigger than the frame time is not allowed in master mode.

Dynamic switching enabled, EXP\_TIME on SOI for exposure settings and HFLIP on SOI for readout settings.
 Immediate switching (readout settings will take effect immediately after switch, exposure settings will take effect at appropriate time in the next frame).

### Table 21: Context switching configuration registers

| Register           | Address | Position | Description                                          |
|--------------------|---------|----------|------------------------------------------------------|
| CONTEXT_SEL 0x1100 | 0       | [0]      | Context selection: 0-Context A, 1-Context B          |
|                    | 001100  | [1]      | Dynamic context switching enable                     |
| CONTEXT_SW_SEL     | 0x1101  | [0]      | Switch context for VBLANK: 1-SOI, 0-EOI              |
|                    |         | [1]      | Switch context for VSTART: 1-SOI, 0-EOI              |
|                    |         | [2]      | Switch context for VSIZE: 1-SOI, 0-EOI               |
|                    |         | [4]      | Switch context for NB_OF_FRAMES: 1-SOI, 0-EOI        |
|                    |         | [5]      | Switch context for ROW_LENGTH: 1-SOI, 0-EOI          |
|                    |         | [6]      | Switch context for EXP_TIME: 1-SOI, 0-EOI            |
|                    |         | [7]      | Switch context for HSIZE, HSTART, HFLIP 1-SOI, 0-EOI |

Available registers with dual contexts and the corresponding addresses are listed in Table 22.

### Table 22: Registers with dual context and corresponding address

| Register     | Position | Address context A | Address context B |
|--------------|----------|-------------------|-------------------|
|              | [7:0]    | 0x1012            | 0x1103            |
| VBLAINK      | [15:8]   | 0x1013            | 0x1104            |
|              | [7:0]    | 0x107D            | 0x1105            |
|              | [15:8]   | 0x107E            | 0x1106            |
| VSTART       | [23:16]  | 0x107F            | 0x1107            |
|              | [31:24]  | 0x1080            | 0x1108            |
|              | [32]     | 0x1081            | 0x1109            |
|              | [7:0]    | 0x1087            | 0x110A            |
|              | [15:8]   | 0x1088            | 0x110B            |
| VSIZE        | [23:16]  | 0x1089            | 0x110C            |
|              | [31:24]  | 0x108A            | 0x110D            |
|              | [32]     | 0x108B            | 0x110E            |
| NB_OF_FRAMES | [7:0]    | 0x10F2            | 0x1111            |
|              | [15:8]   | 0x10F3            | 0x1112            |
| ROW_LENGTH   | [7:0]    | 0x102B            | 0x1113            |
|              | [15:8]   | 0x102C            | 0x1114            |
|              | [7:0]    | 0x100C            | 0x1115            |
|              | [15:8]   | 0x100D            | 0x1116            |
|              | [7:0]    | 0x2008            | 0x2098            |
| HOIZE        | [9:8]    | 0x2009            | 0x2099            |
| USTADT       | [7:0]    | 0x200A            | 0x209A            |
| ΠΟΙΑΚΙ       | [9:8]    | 0x200B            | 0x209B            |
| HFLIP        | [0]      | 0x209C            | 0x209D            |



### Information:

The **MIPI\_HSIZE** is not part of the context switching, which results in an extra I<sup>2</sup>C write when changing the horizontal ROI between contexts.

# 8.3 Configuring the output data format

# 8.3.1 CSI-2 layers

The sensor supports these CSI-2 protocol layer features:

- 1 or 2 data lane configuration with maximum data transfer of 1.5 Gbit/s per lane
- Continuous or non-continuous clock mode
- General and accurate frame formats

The protocol layer supports some features of the D-PHY layer. More details on these can be found in section 8.3.2:

- Ultra low power state (ULPS)
- Initial skew calibration
- Periodic skew calibration

The next sections provide some more detail on the different layers above the Physical Layer.

### 8.3.1.1 Application layer

The Application Layer is what is produced as data to be transmitted over the MIPI interface. The applications are:

- Pixel data
- Statistics information (see section 8.5.3).

### 8.3.1.2 Pixel to byte packing formats

The image pixel data from the device can have different formats. See Table 23 for available options and corresponding data types.

The Image Statistics Data from the device (see section 8.5.3) is transmitted as "Generic Long Packet" with Data Type "Embedded 8-bit non Image Data" (0x12) [CSI-2-v1.3].

### Table 23: MIPI layer data format

| Description | Data type |
|-------------|-----------|
| RAW8        | 0x2A      |
| RAW10       | 0x2B      |
| RAW12       | 0x2C      |

### 8.3.1.3 Low level protocol

Two packet types can be distinguished. The Short Packet Format is used for Synchronization Packets: FS, FE, LS and LE (Frame Start, Frame End, Line Start and Line End) from [CSI-2-v1.3]. The Long Packet Format is used for "RAW data" and "User Defined Byte Based Data" as specified in [CSI-2-v1.3].

Each packet consists of a header, data and footer. The table below gives on overview of the position and information contained in these different parts for different packet types.

| Main part <sup>(1)</sup> | Byte field              | Bit field | Long packet | Short packet | Functionality                                                 |
|--------------------------|-------------------------|-----------|-------------|--------------|---------------------------------------------------------------|
| PH                       | DI (Data ID)            | VC        | Y           | Y            | Virtual Channel Identifier, 2 bits                            |
| PH                       | DI (Data ID)            | DT        | Y           | Y            | Data Type, 6 bits                                             |
| PH                       | WC (Word Count)         |           | Y           | N            | Word Count, 16 bits                                           |
| PH                       | Short packet data field |           | Ν           | Y            | LS, LE: Line number, 16 bits<br>FS, FE: Frame number, 16 bits |
| PH                       | ECC                     |           | Y           | Y            | Error Correction Code, 8 bits                                 |
| Packet data              |                         |           | Y           | N            | Packet Data, "WC" number of bytes                             |
| PF                       | CS (Checksum/CRC)       |           | Y           | N            | Checksum, CRC, 16 bits                                        |

### Table 24: Packet format overview

(1) Explanation of abbreviations:

PH Packet Header

PF Packet Footer

# 8.3.1.4 Lane management layer

The Lane Management Layer controls the number of active lanes over the MIPI interface and the associated Lane Distribution Function as defined in [CSI-2-v1.3]. The sensor supports both single and dual lane configurations.

# 8.3.1.5 Programming guidelines

The CSI-2 transmitter, to become operational, requires the following registers to be programmed. The CSI-2 Transmitter works in either Generic Mode or Accurate Mode.

The sequence below is for basic operation:

- Program Virtual Channel ID (VC\_ID)
- Program horizontal active number of pixels during line blanking
- Provide data type value during line blanking
- Program **FRAME\_MODE**: Frame mode register bit to '0' selects generic mode and '1' selects accurate mode.
- Program Lane registers (LANE). This will specify CSI-2 transmitter to use 1 or 2 lanes to transmit on MIPI lanes. Note that the ROW\_LENGTH should be changed, see section 8.2.2.
- **FRAME\_COUNTER** register to set the limitation of maximum frame number value.
- Program **TX\_CTRL\_EN** register to '1' after programming all the other registers.

# 8.3.2 Physical layer (D-PHY)

The physical output interface consists of one clock lane and two data lanes [DPHY-v1.2]. Each lane consists of two output pins (D\_P and D\_N) that operate in either High Speed Mode (differential, low swing) or Low Power Mode (non-differential, high swing, slow signal).

# 8.3.2.1 High speed (HS) clock and data transmission

The High Speed (HS) data transmission mode transports the data packets supplied by the CSI-2 protocol handler over the interface in bursts.

# 8.3.2.2 Low power (LP) mode

The Low Power (LP) mode is a mode where the data or control is transmitted at a lower speed or where there is no transmission at all, allowing less power to be used. Both lines of a data output pair are used independently and have a higher voltage swing (see section 4). Specific transitions are foreseen between the LP mode and the HS mode.

- Transition between LP and HS modes: See [DPHY-v1.2]
- Electrical characteristics: See section 4 and [DPHY-v1.2]
- "Global Operation Timing Parameters": See section below and [DPHY-v1.2]
- Slew rate control is available for LP data transmission.

# 8.3.2.3 Ultra low power state (ULPS)

In this state, the power is limited to a minimum by transmitting LP-00 (both lines of a data pair are transmitting a "0").



### Information:

The imager needs to be stopped before going into ULPS with IMAGER\_STATE.

### 8.3.2.4 High speed skew calibration

The sensor supports both initial skew calibration and periodic skew calibration as defined in [DPHY-v1.2]. The skew calibration is used to guarantee a bit-error free sampling point of the output data.

The skew calibration sequences are generated automatically, and they are controlled through registers.

# 8.3.3 CSI-2 and D-PHY configuration registers

Table 25: CSI-2 and D-PHY configuration registers

| Register                |        | Address | Position | Description                                                   |
|-------------------------|--------|---------|----------|---------------------------------------------------------------|
| VC_ID                   |        | 0x207C  | [1:0]    | MIPI virtual channel ID                                       |
|                         | [7:0]  | 0x2064  | [7:0]    | Start of Frame (SOE) acquiance length                         |
|                         | [15:8] | 0x2065  | [7:0]    | - Start of Frame (SOF) sequence length.                       |
| ESVNC EOE MAY OTD       | [7:0]  | 0x2066  | [7:0]    | - End of Frame (EOE) sequence length                          |
|                         | [15:8] | 0x2067  | [7:0]    | End of Frame (EOF) sequence length.                           |
|                         | [7:0]  | 0x2068  | [7:0]    | - End of Line (EQL) sequence length                           |
|                         | [15:8] | 0x2069  | [7:0]    | End of Line (EOL) sequence length.                            |
| FSYNC_START_PW          |        | 0x206A  | [3:0]    | Frame timing pulse width.                                     |
|                         |        |         | [0]      | Vertical start after SOF event pulse enable.                  |
|                         |        |         | [1]      | Vertical end after EOF event pulse enable.                    |
|                         |        |         | [2]      | Horizontal start after SOF event pulse enable.                |
|                         |        |         | [3]      | Horizontal start after EOL event pulse enable.                |
| FSTNC_FULSES_EN         |        | 0X2066  | [4]      | Horizontal end after EOL event pulse enable.                  |
|                         |        |         | [5]      | Horizontal start for statistics after EOF event pulse enable. |
|                         |        |         | [6]      | Data start for statistics after EOF event pulse enable.       |
|                         |        |         | [7]      | Horizontal end for statistics after EOF event pulse enable.   |
| FOWNO COF VOTADT OT     | [7:0]  | 0x206C  | [7:0]    | MIPI vsync_start_pulse start during SOF                       |
| FSTINC_SOF_VSTART_ST    | [15:8] | 0x206D  | [7:0]    | sequence.                                                     |
| ESVNC EOE VEND ST       | [7:0]  | 0x206E  | [7:0]    | MIPI vsync_end_pulse start during EOF                         |
|                         | [15:8] | 0x206F  | [7:0]    | sequence.                                                     |
| ESVNC SOF HSTART ST     | [7:0]  | 0x2070  | [7:0]    | _ MIPI hsync_start_pulse start during SOF                     |
|                         | [15:8] | 0x2071  | [7:0]    | sequence.                                                     |
| ESYNC FOL HSTART ST     | [7:0]  | 0x2072  | [7:0]    | _ MIPI hsync_start_pulse during EOL                           |
|                         | [15:8] | 0x2073  | [7:0]    | sequence.                                                     |
| ESYNC FOL HEND ST       | [7:0]  | 0x2074  | [7:0]    | _ MIPI hsync_end_pulse start during EOL                       |
|                         | [15:8] | 0x2075  | [7:0]    | sequence.                                                     |
| ESYNC FOF HSTART EMB ST | [7:0]  | 0x2076  | [7:0]    | _ MIPI hsync_start_pulse start for statistics                 |
|                         | [15:8] | 0x2077  | [7:0]    | data during EOF sequence.                                     |

| Register                |        | Address      | Position | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|--------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ESYNC FOE DSTART EMB ST |        | 0x2078       | [7:0]    | _ MIPI Data transmission start pulse for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | [15:8] | 0x2079       | [7:0]    | statistics data during EOF sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ESYNC FOF HEND FMB ST   | [7:0]  | 0x207A [7:0] |          | _ MIPI hsync_end_pulse start for statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | [15:8] | 0x207B       | [7:0]    | data during EOF sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |        |              | [0]      | D-PHY soft reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         |        |              | [1]      | Pixel clock soft reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MIPL SOFT RESET         |        | 0x5004       | [2]      | Lane clock soft reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |        | 0,000+       | [3]      | Byte clock soft reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |        |              | [4]      | Escape clock reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |        |              | [5]      | APB clock reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |        |              | [0]      | Power down enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MIPI_PWR_DWN            |        | 0x5006       | [4]      | 0: Fast-suspend settings<br>1: Standby settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MIPI_RST_CFG            |        | 0x5011       | [2:0]    | 0x0: Active<br>0x1: Suspend<br>0x2: Standby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MIPI_VCTRL              |        | 0x5099       | [4:0]    | 0x00: Normal mode<br>0x01: LP RX DC test<br>0x02: LP TX DC 1<br>0x03: LP TX DC 0<br>0x04: HS TX DC 0<br>0x09: LP TX parbert data burst<br>0x06: LP TX parbert data continuous<br>0x08: LP TX fixed data burst<br>0x0C: LP TX fixed data continuous<br>0x0D: HS TX skewcal + fixed data burst<br>0x0C: LP TX fixed data with burst<br>0x0E: HS TX skewcal + fixed data<br>continuous<br>0x0F: HS TX fixed data with burst<br>0x10: HS TX fixed data with continuous<br>0x11: HS TX skewcal + parbert<br>continuous<br>0x12: HS TX skewcal + PRBS9<br>continuous<br>0x13: HS TX skewcal + PRBS9 burst<br>0x14: HS TX skewcal + PRBS9 burst<br>0x16: HS TX parbert burst<br>0x16: HS TX parbert continuous<br>0x10: HS TX parbert continuous<br>0x11: HS TX parbert continuous<br>0x12: HS TX parbert continuous<br>0x16: HS TX PRBS9 continuous<br>0x17: HS TX internal loopback<br>0x18: ULPS<br>0x1F: Suspend mode |
| DPDN_SWAP               |        | 0x50D9       | [2:0]    | Enable DP/DN swap function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TINIT                   | [15:8] | 0x6001       | [7:0]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Register                |        | Address | Position | Description                                                                                                                                   |
|-------------------------|--------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                         | [7:0]  | 0x6002  | [7:0]    | Initialization period. After power-up,<br>TxRequestHSC will be asserted after this<br>Tinit time to initiate HS clock transmission<br>by PHY. |
| TX_CTRL_EN              |        | 0x6006  | [0]      | 0: Controller not ready<br>1: Controller ready to transfer<br>This bit needs to be set after all other<br>registers are programmed.           |
| FRAME MODE              |        | 0x6010  | [0]      | 0: General frame format<br>1: Accurate frame format                                                                                           |
|                         |        | 0,0010  | [1]      | 0: General embedded frame format<br>1: Accurate embedded frame format                                                                         |
|                         |        |         | [0]      | Data Enable Polarity (0-Active high)                                                                                                          |
| POLARITY <sup>(1)</sup> |        | 0x6011  | [1]      | HSYNC polarity (0-Active high)                                                                                                                |
|                         |        |         | [2]      | VSYNC polarity (0-Active high)                                                                                                                |
| LANE                    |        | 0x6012  | [0]      | 0: 1 lane<br>1: 2 lanes                                                                                                                       |
| CLK_MODE <sup>(2)</sup> |        | 0x6013  | [0]      | 0: Continuous PHY clocking<br>1: Non-continuous PHY clocking.                                                                                 |
|                         |        | 0,0014  | [0]      | Puts clock lane in ULPS Mode.                                                                                                                 |
|                         |        | 00014   | [1]      | Exits clock lane out of ULPS Mode.                                                                                                            |
|                         |        |         | [0]      | Puts Data_0 in ULPS mode.                                                                                                                     |
| ULF3                    |        | 0x6015  | [1]      | Exit Data_0 out of ULPS mode.                                                                                                                 |
|                         |        | 0x0015  | [2]      | Puts Data_1 in ULPS mode.                                                                                                                     |
|                         |        |         | [3]      | Exits Data_1 out of ULPS mode.                                                                                                                |
| FRAME_COUNTER           | [15:8] | 0x6016  | [7:0]    | If 0, frame number is disabled. Otherwise,<br>the frame number periodically resets to 1<br>after FRAME_COUNTER value is                       |
|                         | [7:0]  | 0x6017  | [7:0]    | reached.                                                                                                                                      |
|                         |        |         | [0]      | RAW8: 0-disable; 1-line counter increments with 1.                                                                                            |
| LINE_COUNT_RAW          |        | 0x6037  | [1]      | RAW10: 0-disable; 1-line counter increments with 1.                                                                                           |
|                         |        |         | [2]      | RAW12: 0-disable; 1-line counter increments with 1.                                                                                           |
|                         |        |         | [0]      | UDT1, 0-disable, 1- += 1                                                                                                                      |
|                         |        |         | [1]      | UDT2, 0-disable, 1- += 1                                                                                                                      |
| LINE COUNT LISER DEF    |        | 0x6038  | [2]      | UDT3, 0-disable, 1- += 1                                                                                                                      |
|                         |        | 0,0000  | [3]      | UDT4, 0-disable, 1- += 1                                                                                                                      |
|                         |        |         | [4]      | UDT5, 0-disable, 1- += 1                                                                                                                      |
|                         |        |         | [5]      | UDT6, 0-disable, 1- += 1                                                                                                                      |

| Register                    |        | Address | Position | Description                                                                                                                       |
|-----------------------------|--------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------|
|                             |        |         | [6]      | UDT7, 0-disable, 1- += 1                                                                                                          |
|                             |        |         | [7]      | UDT8, 0-disable, 1- += 1                                                                                                          |
| LINE_COUNT_EMB              |        | 0x6039  | [0]      | Enable line counter for embedded data.                                                                                            |
|                             |        | 0,0018  | [0]      | Enable interrupt to indicate CCI read command is received.                                                                        |
| INTERROFT_EN                |        | 00010   | [1]      | Enable interrupt to indicate CCI write command is received.                                                                       |
|                             |        | 0.0010  | [0]      | Asserted by the controller when CCI read command is received.                                                                     |
|                             |        | 0,0019  | [1]      | Asserted by the controller when CCI write command is received.                                                                    |
| TWAKE TIMER                 | [15:8] | 0x6065  | [7:0]    | Timer that TX drives a Mark-1 state prior<br>to a Stop state in order to initiate an exit<br>from ULPS. Protocol waits for a time |
| _                           | [7:0]  | 0x6066  | [7:0]    | Twake and then drives TxRequestEscx<br>(TxUlpsClk) inactive to return the lane to<br>stop state. This timer runs in TxClkEsc.     |
| SKEW_CAL_EN                 |        | 0x601C  | [0]      | Enable periodic skew calibration<br>TxSkewCalHS0 PPI signal during Frame<br>blanking.                                             |
|                             | [11:8] | 0x601D  | [3:0]    | Time duration of skew calibration pattern                                                                                         |
| SKEW_COUNT                  | [7:0]  | 0x601E  | [7:0]    | Frame blanking.                                                                                                                   |
| SCRAMBLING_EN               |        | 0x601F  | [0]      | Scrambling enable                                                                                                                 |
| INIT_SKEW_EN <sup>(3)</sup> |        | 0x6003  | [0]      | Enable initial skew calibration assert PPI signal during initialization.                                                          |
|                             | [15:8] | 0x6004  | [7:0]    | Time duration of initial skew-calibration                                                                                         |
| INII_SKEW                   | [7:0]  | 0x6005  | [7:0]    | pattern. Value denotes number of byte clocks.                                                                                     |

(1) Before programming, reset should apply.

 $(2) \quad \mbox{Program after the common upload file is written to the sensor.}$ 

(3) Program before setting register TX\_CTRL\_EN.

# 8.3.4 MIPI data rate

By default, after power-up the MIPI transmitter is configured in 1.5 Gbit/s transmission mode. To configure MIPI transmitter into different data rates, the following values from Table 26 should be written in the same order.

| Address | 1.5  | 1.4  | 1.3  | 1.2  | 1.1  | 1    | 0.9  | 0.8  | 0.7  | 0.6  | 0.5  | 0.4  | 0.3  | 0.2  | 0.1  | 0.08 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0x5004  | 0x01 |
| 0x5086  | 0x02 |
| 0x5087  | 0x4E | 0x48 | 0x43 | 0x3E | 0x39 | 0x34 | 0x2E | 0x53 | 0x48 | 0x7D | 0x68 | 0x53 | 0x7D | 0x53 | 0x53 | 0x42 |
| 0x5088  | 0x00 |
| 0x5090  | 0x00 | 0x02 | 0x02 | 0x04 | 0x04 | 0x04 | 0x06 | 0x06 | 0x08 | 0x08 |
| 0x5091  | 0x08 | 0x07 | 0x07 | 0x06 | 0x06 | 0x05 | 0x05 | 0x09 | 0x08 | 0x0E | 0x0C | 0x0A | 0x11 | 0x0C | 0x10 | 0x0E |
| 0x5092  | 0x14 | 0x14 | 0x12 | 0x11 | 0x0F | 0x0E | 0x0D | 0x17 | 0x14 | 0x23 | 0x1D | 0x18 | 0x25 | 0x1B | 0x21 | 0x1D |
| 0x5093  | 0x0F | 0x0E | 0x0D | 0x0D | 0x0C | 0x0B | 0x0A | 0x10 | 0x0F | 0x17 | 0x14 | 0x11 | 0x19 | 0x13 | 0x17 | 0x15 |
| 0x5094  | 0x06 | 0x06 | 0x05 | 0x05 | 0x04 | 0x04 | 0x03 | 0x07 | 0x06 | 0x0A | 0x09 | 0x07 | 0x0A | 0x07 | 0x07 | 0x05 |
| 0x5095  | 0x32 | 0x2F | 0x2C | 0x28 | 0x25 | 0x22 | 0x1F | 0x35 | 0x2F | 0x50 | 0x42 | 0x35 | 0x50 | 0x35 | 0x35 | 0x2B |
| 0x5096  | 0x0E | 0x0E | 0x0D | 0x0C | 0x0B | 0x0B | 0x0A | 0x0F | 0x0E | 0x15 | 0x12 | 0x0F | 0x15 | 0x0F | 0x0F | 0x0D |
| 0x5097  | 0x00 | 0x01 | 0x01 | 0x03 | 0x03 | 0x03 | 0x07 | 0x07 | 0x0F | 0x0F |
| 0x5098  | 0x11 | 0x10 | 0x0F | 0x0F | 0x0E | 0x0D | 0x0C | 0x18 | 0x16 | 0x2B | 0x28 | 0x25 | 0x45 | 0x3F | 0x73 | 0x71 |
| 0x5004  | 0x00 |
| 0x2066  | 0x6C | 0x00 |
| 0x2067  | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0D | 0x10 | 0x14 | 0x18 | 0x28 | 0x30 | 0x40 | 0x40 | 0x50 | 0x60 |
| 0x206E  | 0x7E | 0x80 | 0x00 |
| 0x206F  | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0E | 0x13 | 0x16 | 0x20 | 0x28 | 0x30 | 0x38 | 0x4C | 0x58 |
| 0x20AC  | 0x7E | 0x80 | 0x00 |
| 0x20AD  | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0E | 0x13 | 0x16 | 0x20 | 0x28 | 0x30 | 0x38 | 0x4C | 0x58 |
| 0x2076  | 0xC8 | 0x80 | 0x00 | 0xC8 |
| 0x2077  | 0x00 | 0x04 | 0x05 | 0x05 | 0x06 | 0x06 | 0x07 | 0x09 | 0x11 | 0x12 | 0x1A | 0x22 | 0x24 | 0x30 | 0x44 | 0x50 |
| 0x20B4  | 0xC8 | 0x80 | 0x00 | 0xC8 |
| 0x20B5  | 0x00 | 0x04 | 0x05 | 0x05 | 0x06 | 0x06 | 0x07 | 0x09 | 0x11 | 0x12 | 0x1A | 0x22 | 0x24 | 0x30 | 0x44 | 0x50 |
| 0x2078  | 0x1E | 0x1E | 0x5E | 0x1E |
| 0x2079  | 0x04 | 0x05 | 0x05 | 0x05 | 0x06 | 0x06 | 0x07 | 0x09 | 0x11 | 0x12 | 0x1A | 0x22 | 0x24 | 0x34 | 0x44 | 0x54 |
| 0x20B6  | 0x1E | 0x1E | 0x5E | 0x1E |
| 0x20B7  | 0x04 | 0x05 | 0x05 | 0x05 | 0x06 | 0x06 | 0x07 | 0x09 | 0x11 | 0x12 | 0x1A | 0x22 | 0x24 | 0x34 | 0x44 | 0x54 |
| 0x207A  | 0xD4 | 0xA0 | 0xE0 | 0xD4 |
| 0x207B  | 0x04 | 0x05 | 0x05 | 0x05 | 0x06 | 0x06 | 0x07 | 0x09 | 0x11 | 0x12 | 0x1A | 0x22 | 0x24 | 0x34 | 0x44 | 0x54 |
| 0x20B8  | 0xD4 | 0xA0 | 0xE0 | 0xD4 |
| 0x20B9  | 0x04 | 0x05 | 0x05 | 0x05 | 0x06 | 0x06 | 0x07 | 0x09 | 0x11 | 0x12 | 0x1A | 0x22 | 0x24 | 0x34 | 0x44 | 0x54 |

| Table 26: MIPI data | rate configuration | sequence (in | Gbit/s per lane) |
|---------------------|--------------------|--------------|------------------|
|---------------------|--------------------|--------------|------------------|

**CIMUI OSRAM** 

The row length needs to be adapted based on the required MIPI speed and rounded up to ensure the row time is long enough to transmit all the data. E.g. the MIPI data rate is set to 0.8 Gbit/s then the row length must increase to [304\*1.5/0.8] = 563 = 0x0233. The frame rate and exposure time would be limited due to this row time increase.

# 8.4 Configuring the on-chip data processing

# 8.4.1 Black sun protection

The black sun protection is used to avoid dark spots in the image, caused by high light levels in extremely oversaturated scenes.

### Table 27: Black sun protection configuration registers

| Register | Address | Position | Description                         |
|----------|---------|----------|-------------------------------------|
| BSP      | 0x4006  | [3:0]    | 0xF: Disable BSP<br>0x8: Enable BSP |

# 8.4.2 Bit depth

The sensor supports different image bit depths. Please note that the correct MIPI data type should be selected for each bit depth.

### Table 28: Image bit depth configuration registers

| Register   | Address | Position | Description |
|------------|---------|----------|-------------|
|            |         |          | 0x2: 12-bit |
| BIT_DEPTH  | 0x209E  | [2:0]    | 0x4: 10-bit |
|            |         |          | 0x6: 8-bit  |
|            |         |          | 0x4: 12-bit |
| CSI2_DTYPE | 0x208D  | [2:0]    | 0x2: 10-bit |
|            |         |          | 0x1: 8-bit  |

# 8.4.3 Digital correlated double sampling

The sensor supports Digital Correlated Double Sampling (DCDS). If enabled, DCDS logic subtracts the pixel signal value from the pixel reset value.

Table 29: Digital CDS configuration registers

| Register | Address | Position | Description                            |
|----------|---------|----------|----------------------------------------|
| CDS_RNC  | 0x2045  | [0]      | Row noise correction column CDS enable |
| CDS_IMG  | 0x2048  | [0]      | Image column CDS enable                |

### 8.4.4 Row noise correction

The sensor supports row noise correction. Refer to application note AN001032 when changing the flat field target value.

#### Table 30: Row noise correction configuration registers

| Register         |        | Address | Position | Description                                                           |
|------------------|--------|---------|----------|-----------------------------------------------------------------------|
| RNC_EN           |        | 0x204B  | [1:0]    | 0x0: Disable row noise correction<br>0x3: Enable row noise correction |
|                  | [7:0]  | 0x205B  | [7:0]    | Elat field target value                                               |
| NING_DANK_TARGET | [11:8] | 0x205C  | [7:0]    |                                                                       |

# 8.4.5 Defect pixel detection and correction

An investigated pixel (A) can be detected as a defect and corrected by the use of four surrounding pixels (v, w, x and y). These four pixels are located next to A in two dimensions or on a line. The two modes are illustrated in Figure 23 and Figure 24. Other pixels are not taken into account. For the 2D mode, the pixels from the first and last columns and rows are not corrected. For the 1D mode, the pixels from the first two and last two columns are not corrected.

Figure 23: Defect pixel mode 2D

|   | v |  |
|---|---|--|
| х | A |  |
|   | w |  |
|   |   |  |

### Figure 24: Defect pixel mode 1D

|  |  | A |  |  |
|--|--|---|--|--|
|  |  |   |  |  |

From the four pixels, the minimal and maximal value are taken. These values are used as inputs for the pixel defect detection limits:

- The minimal value (MIN) is used for the calculation of the lower limit.
- The maximal value (MAX) is used for the calculation of the higher limit.
- A defect pixel is detected as being defective when its value is outside the limits mentioned above. When it is detected, it can be corrected.

**CIMU OSRAM** 

The **DC\_LIMIT\_LOW** and **DC\_LIMIT\_HIGH** are used for this calculation, but two modes are possible for the higher limit. The selection between both is done with the **DEFECT\_LIMIT\_HIGH\_MODE** setting.

The lower and higher limits are calculated as follows and shown in Figure 25 and Figure 26:

*lower limit* =  $MIN \cdot (1 - 2^{-DC\_LIMIT\_LOW})$ 

 $higher\ limit\ = \begin{cases} MAX\ \cdot (1+2^{-DC\_LIMIT\_HIGH}), & DC\_LIMIT\_HIGH\_MODE = 0\\ MAX\ + (NOT\ MAX)\ \cdot\ 2^{-DC\_LIMIT\_HIGH}, & DC\_LIMIT\_HIGH\_MODE = 1 \end{cases}$ 

with 'NOT MAX' = bit-per-bit inversion of the MAX value.

Figure 25: Defect high limit calculation (Mode 0)



The higher limit calculated in this way is relative to the effective value of the MAX value and can maximally be the double of the MAX value. This can be a problem for low values or "black" where the limit will be too tight to the pixel value.





This higher limit calculation is leading to levels that are "symmetrical" to the behavior of the lower limit calculation. Here, the highest value is the maximal pixel value.

Following algorithms are supported for the pixel corrections where A is replaced by:

- Median(v, w, x, y)
- Mean(v, w, x, y)
- Min(mean(v, w), mean(x, y))
- Max(mean(v, w), mean(x, y))

| Table 31: | <b>Defect pixel</b> | correction | configuration | registers |
|-----------|---------------------|------------|---------------|-----------|
|-----------|---------------------|------------|---------------|-----------|

| Register           | Address | Position | Description                      |
|--------------------|---------|----------|----------------------------------|
|                    |         | [0]      | Defect correction enable         |
|                    |         | [1]      | Mode<br>0: 2D<br>1: 1D           |
| DC_CFG             | 0x24DC  |          | Replacement value<br>0x0: Median |
|                    |         | [5:4]    | 0x1: Mean                        |
|                    |         |          | 0x2: Minimum                     |
|                    |         |          | 0x3: Maximum                     |
| DC_LIMIT_LOW       | 0x24DD  | [3:0]    | Low limit                        |
| DC_LIMIT_HIGH      | 0x24DE  | [3:0]    | High limit                       |
| DC_LIMIT_HIGH_MODE | 0x24DF  | [0]      | High limit mode                  |

# 8.5 Additional features

# 8.5.1 Illumination trigger

A trigger signal or a sequence of trigger signals on the external pin ILLUM\_TRIGGER can be sent off chip by the sensor to activate an external component such as a flash or illumination device (VCSEL). The trigger signal is synchronized to the sensor exposure moment. The trigger signal can be enabled or disabled.





### Table 32: Illumination trigger configuration registers

| Register  | Address | Position | Description                 |
|-----------|---------|----------|-----------------------------|
| ILLUM_EN  | 0x10D7  | [0]      | Illumination trigger enable |
| ILLUM_POL | 0x10D8  | [1]      | Polarity                    |

# 8.5.2 Read trigger

The sensor sends a trigger signal off chip on the external pin READ\_TRIGGER. This trigger signal is synchronized to the sensor readout moment.

### 8.5.3 Image statistics

The value of the pixels of a frame can be statistically investigated and gathered into a histogram containing 32 bins. Next to the 32 equally distributed bins, also the number of clipped black and clipped white pixels are separately gathered and sent out.

The histogram is packed into a data-byte oriented CSI-2 packet which is sent over the D-PHY at the end of the transmission of the frame. The sensor will send out the Image Statistics Data as a CSI-2 Generic Long Packet with Data Type "Embedded 8-bit non Image Data" (0x12) and with the currently used Virtual Channel ID.

The Image Statistics Histogram Data format is shown in Figure 28. The data part of a packet consists of 36 groups of each 4 bytes. The first element will contain all-1s (start of sequence marker), the histogram ID will be all-0s, then followed by the bin data.

### Figure 28: Histogram data formatting



**CALL OSRAM** 

The bin data is structured as follows:

- 1. "C0": Bin containing the number of pixels that are 0 (black pixels)
- 2. "B0" "B31": 32 equally sized histogram bins spread over the entire output range
- "C31": Bin containing the number of pixels that have the maximum value (white pixels). All pixels in bin "C0" are also part of bin "B0". All pixels in bin "C31" are also part of bin "B31".

It is possible not to include all pixels in the statistic gathering. The spatial distribution is configured by register settings. Since the data path processes and operates on two pixels simultaneously, the spatial distribution keeps two neighboring pixels and skips by multiple number of groups of two pixels as shown in Figure 29. This is done for each row of the pixel array.

#### Figure 29: Histogram spatial distribution of input data



#### Table 33: Image statistics configuration registers

| Register         | Address | Position | Description                                                                              |
|------------------|---------|----------|------------------------------------------------------------------------------------------|
| HIST_EN          | 0x205D  | [0]      | Enable image statistics calculation                                                      |
| HIST_USAGE_RATIO | 0x205E  | [7:0]    | Spatial distribution configuration                                                       |
| PIXEL_DATA_SUPP  | 0       | [1]      | <ul><li>0: Send both pixel data and statistics</li><li>1: Send only statistics</li></ul> |
|                  | UX2063  | [2]      | 0: Statistic transmission disabled<br>1: Statistic transmission enabled                  |

# 8.5.4 Temperature sensor

The sensor contains a temperature sensor in the readout layer. The temperature sensor produces a voltage proportional to the temperature (VPTAT) and a temperature invariant reference voltage (VREF). An ADC converts the output of the temperature sensor to a 22-bit digital gray code. This ADC is identical to the ADC's used for pixel conversions. The temperature sensor output is updated once per row length during readout and is available over the CCI interface and during the readout of image data.

| Register  |        | Address | Position | Description                               |
|-----------|--------|---------|----------|-------------------------------------------|
|           | [7:0]  | 0x3188  | [7:0]    | - Tomperature concerninged value ()/PTAT) |
| 13EN3_31G | [11:8] | 0x3189  | [3:0]    |                                           |
| TOENO DOT | [7:0]  | 0x318E  | [7:0]    | Tomporature concer report value ()/PEE)   |
| ISENS_KSI | [9:8]  | 0x318F  | [1:0]    |                                           |

### Table 34: Temperature sensor registers

# 8.5.4.1 Uncalibrated temperature measurement

The temperature sensor typically produces a differential voltage, VREF - VPTAT, of 140 mV at 25 °C with a slope of 1.63 mV/°C. The conversion of the register value to degrees Celsius is shown in the following equation.

### **Equation 3:**

$$T[^{\circ}C] = \frac{[gray\_to\_decimal(TSENS\_SIG) - gray\_to\_decimal(TSENS\_RST)] * 0.181 - 140}{1.63} + 25$$

# 8.5.4.2 Calibrated temperature measurement

The accuracy of temperature measurements can be improved after performing a single-point calibration. During wafer test, the temperature is measured in a controlled environment. Calibration data is written to the OTP memory of the sensor (see 8.5.5). The calibrated temperature is calculated using the following equation.

Equation 4:

$$T_{cal}[^{\circ}C] = \frac{T_{wafer,expected}[^{\circ}C]}{T_{wafer,measured}[^{\circ}C]} \cdot T_{uncal,x} [^{\circ}C]$$

Which uses the following parameters:

- T<sub>wafer,expected</sub>: The expected temperature at wafer test, which is 60 °C. The exact value is stored in OTP register "Chuck temperature".
- T<sub>wafer,measured</sub>: The measured (uncalibrated) temperature sensor value at wafer test. The value can be calculated based on the temperature sensor readout values TSENS\_SIG and TSENS\_RST stored in OTP registers. This calibration gain coefficient is fixed and only needs to be calculated once.

# 8.5.5 OTP memory

A non-volatile, one time programmable memory is included on-chip. The OTP memory is organized in 1024 addresses of 32 bits each. Part of the memory (0x000 - 0xFF) is used by ams OSRAM for a unique device ID and sensor calibration data. The sensor calibration data has to be read from the specified OTP addresses and written into specific registers as shown in Table 35 by the customer. The addresses not mentioned in the ams OSRAM space below are subject to change without notice. The remaining addresses of the OTP are available to the customer (0x100 - 0x3FF). For further details on reading calibration values on OTP please refer to AN001030.

# Attention:

The OTP data on the same address location cannot be written more than three times. It is not recommended to do this because neighboring locations might be affected.

The OTP is not write protected. Hence, the customer is responsible for not overwriting the preprogrammed OTP data which is essential for calibration. Furthermore, the customer is responsible to ensure the integrity of the data they program themselves.

### Table 35: Relevant OTP addresses

| Address | Position | Description                                                    | Destination registers |
|---------|----------|----------------------------------------------------------------|-----------------------|
| 0x00    | [2:0]    | Calibration bits for VDD11A                                    | 0x4015 [2:0]          |
| 0x01    | [2:0]    | Calibration bits for VDD11D                                    | 0x4016 [2:0]          |
| 0x01    | [6:4]    | Calibration bits for VDD11PLL                                  | 0x4016 [6:4]          |
| 0x04    | [5:0]    | Calibration bits for VDDNEG_2                                  | 0x403B [5:0]          |
| 0x05    | [2:0]    | Calibration bits for VDDINT_4                                  | 0x4040 [2:0]          |
| 0x05    | [6:4]    | Calibration bits for VDDINT_5                                  | 0x4040 [6:4]          |
| 0x06    | [2:0]    | Calibration bits for VSEL_HI (not observable, programmed to 7) | 0x4041 [2:0]          |
| 0x06    | [6:4]    | Calibration bits for VDDINT_2                                  | 0x4041 [6:4]          |
| 0x07    | [2:0]    | Calibration bits for VDDINT_3                                  | 0x4042 [2:0]          |
| 0x08    | [6:0]    | Calibration bits for VSEL_VREF                                 | 0x402A [6:0]          |
| 0x09    | [6:0]    | Calibration bits for VSEL_VOS                                  | 0x4029 [6:0]          |
| 0x0A    | [5:0]    | Calibration bits for RAMPGEN_TRIMM_X1 1x gain calibration      | 0x4009 [5:0]          |
| 0x0D    | [4:0]    | Calibration bits for VDDNEG_1                                  | 0x403E [4:0]          |
| 0x0E    | [15:0]   | Black level value                                              |                       |
| 0x19    | [15:0]   | Chuck temperature [°C]                                         |                       |
| 0x1B    | [11:0]   | TSENS_SIG at 60 °C                                             |                       |
| 0x1C    | [9:0]    | TSENS_RST at 60 °C                                             |                       |
| 0x1D    | [31:0]   |                                                                |                       |
| 0x1E    | [23:0]   | Unique device ID <sup>(1)</sup>                                |                       |
| 0x25    | [7:0]    |                                                                |                       |
| 0x3A    | [7:0]    | Revision number of the sample                                  |                       |
| 0x3E    | [31:0]   | SAP material code                                              |                       |

(1) The order is 0x1D, 0x1E, 0x25. For example 07:E4:0C:09:09:08:22:00.

### Table 36: OTP configuration registers

| Register   |         | Address | Position | Description                                 |
|------------|---------|---------|----------|---------------------------------------------|
|            |         |         | [0]      | Write (self-clearing)                       |
|            |         |         | [1]      | Read (self-clearing)                        |
|            |         | 0,0000  | [2]      | Power up (self-clearing)                    |
|            |         | 0X0000  | [3]      | Power down (self-clearing)                  |
|            |         |         | [4]      | Deep standby ON (self-clearing)             |
|            |         |         | [5]      | Deep standby OFF (self-clearing)            |
|            |         |         | [0]      | Status bit: 1-OTP is ready for next command |
| OTP_STATUS |         | 0x0081  | [1]      | Power status: 0-OFF, 1-ON                   |
|            |         |         | [2]      | Standby status: 0-OFF, 1-ON                 |
|            | [7:0]   | 0x0082  | [7:0]    |                                             |
|            | [15:8]  | 0x0083  | [7:0]    | Pood data                                   |
| OIF_RDATA  | [23:16] | 0x0084  | [7:0]    |                                             |
|            | [31:24] | 0x0085  | [7:0]    |                                             |
|            | [7:0]   | 0x0086  | [7:0]    | Addross                                     |
| OTP_ADDR   | [9:8]   | 0x0087  | [1:0]    | Address                                     |
| OTP_WDATA  | [7:0]   | 0x0088  | [7:0]    |                                             |
|            | [15:8]  | 0x0089  | [7:0]    | Write deta                                  |
|            | [23:16] | 0x008A  | [7:0]    |                                             |
|            | [31:24] | 0x008B  | [7:0]    |                                             |

The procedure to read an OTP address is as follows:

- 1. Power on: Write 0x04 to address 0x0080
- 2. Set address: Write OTP address to address 0x0086
- 3. Read OTP instruction: Write 0x02 to address 0x0080
- 4. Read data: Read from address 0x0082 to 0x0085
- 5. Power off: Write 0x08 to address 0x0080

**CIMUI OSRAM** 

# 8.5.6 Test images

Different test images patterns are available: vertical gradient, diagonal gradient, walking 1's and walking 0's.

### Table 37: Test image configuration registers

| Register         | Address | Position | Description               |
|------------------|---------|----------|---------------------------|
| TEST_PATTERN_CFG | 0x2091  | [0]      | Image test pattern enable |
|                  |         | [6:4]    | 0x0: Vertical gradient    |
|                  |         |          | 0x1: Diagonal gradient    |
|                  |         |          | 0x4: Walking 1's          |
|                  |         |          | 0x5: Walking 0's          |

### Figure 30: Test image diagonal gradient



**CALL OSRAM** 

### 8.5.7 Power modes and power saving options

### 8.5.7.1 Power modes

The sensor supports different fully configurable power modes. This allows putting the sensor in a low-power sleep mode when not used or activate all blocks again with a single CCI command, see section 7.7 and application note AN001027.

# 8.5.7.2 Power saving options

When using a reduced ROI, it is possible to disable parts of the readout circuit. Figure 31 shows the partitioning of the readout circuit.



Figure 31: Readout circuit partitioning
### Table 38: Readout power saving configuration registers

| Window | Address | Position | RNC enabled | RNC disabled |
|--------|---------|----------|-------------|--------------|
|        | 0x4006  | [3:0]    | 0x8         | 0x8          |
| 2.24MP | 0x4007  | [7:0]    | 0x00        | 0x88         |
|        | 0x401C  | [3:0]    | 0xF         | 0x7          |
|        | 0x4006  | [3:0]    | 0xC         | 0xC          |
| 1.4MP  | 0x4007  | [7:0]    | 0x44        | 0xCC         |
|        | 0x401C  | [3:0]    | 0xB         | 0x3          |
|        | 0x4006  | [3:0]    | 0xE         | 0xE          |
| VGA    | 0x4007  | [7:0]    | 0x66        | 0xEE         |
|        | 0x401C  | [3:0]    | 0x9         | 0x1          |

# 9 Register description

Below is an overview of all registers, together with their default value after reset/startup. Some registers have to be changed to another fixed value after reset/startup, independent of the sensor control or modes. This value is in the last column.

### 0

### Attention:

For register settings that require multiple addresses to be written, please ensure that the LSB is written before the MSB. For example, to change the exposure time first write 0x100c and then 0x100d.

| Addr   | <d7></d7> | <d6></d6>         | <d5></d5> | <d4></d4> | <d3></d3> | <d2></d2>               | <d1></d1> | <d0></d0>            | Default | Fixed | Туре   |
|--------|-----------|-------------------|-----------|-----------|-----------|-------------------------|-----------|----------------------|---------|-------|--------|
| 0x0012 | -         | -                 | -         | -         | -         | DI                      | RIVE_STRE | INGTH                | 0x00    | -     | rw     |
| 0x0040 | -         | -                 | -         | -         | -         | -                       | -         | CMD_SOFT<br>_RESET   | 0x00    | -     | strobe |
| 0x0041 | -         | -                 | -         | -         | -         | -                       | -         | CMD_REQ_<br>EXPOSURE | 0x00    | -     | rw     |
| 0x0042 | -         | -                 | -         | -         | -         | -                       | -         | CMD_REQ_<br>FRAME    | 0x00    | -     | strobe |
| 0x0043 | -         | -                 | -         | -         |           | POW                     | ER_MODE   |                      | 0x0C    | -     | rw     |
| 0x0080 | -         |                   |           |           | 0         | TP_CMD                  |           |                      | 0x00    | -     | strobe |
| 0x0081 | -         | -                 | -         | -         | -         |                         | OTP_STA   | TUS                  | 0x00    | -     | ro     |
| 0x0082 |           |                   |           |           |           |                         |           |                      | 0x00    | -     | ro     |
| 0x0083 | -         |                   |           | OTD       |           |                         |           |                      | 0x00    | -     | ro     |
| 0x0084 | -         |                   |           | OIP_      | _RDATA    |                         |           |                      | 0x00    | -     | ro     |
| 0x0085 | -         |                   |           |           |           |                         |           |                      | 0x00    | -     | ro     |
| 0x0086 |           |                   |           | OTP       | _ADDR     |                         |           |                      | 0x00    | -     | rw     |
| 0x0087 | -         | -                 | -         | -         | -         | -                       | ОТ        | P_ADDR               | 0x00    | -     | rw     |
| 0x0088 |           |                   |           |           |           |                         |           |                      | 0x00    | -     | rw     |
| 0x0089 | -         |                   |           | 075       |           |                         |           |                      | 0x00    | -     | rw     |
| 0x008A | -         |                   |           | OIP_      | _WDATA    |                         |           |                      | 0x00    | -     | rw     |
| 0x008B | -         |                   |           |           |           |                         |           |                      | 0x00    | -     | rw     |
| 0x1001 | -         | EXT_EVE<br>NT_SEL | -         | -         | -         | -                       | -         | EXT_EXP_P<br>W_SEL   | 0xD0    | -     | rw     |
| 0x1002 | -         | -                 | -         | -         | -         | IMAGER<br>_RUN_C<br>ONT | -         | -                    | 0x00    | -     | rw     |
| 0x1003 | -         | -                 |           |           | IMAG      | GER_STATE               |           |                      | 0x01    | -     | rw     |
| 0x100C |           |                   |           |           |           |                         |           |                      | 0xBC    | -     | rw     |
| 0x100D | -         |                   |           | EXF       |           |                         |           |                      | 0x02    | -     | rw     |
| 0x1012 |           |                   |           | VB        | BLANK     |                         |           |                      | 0x06    | -     | rw     |

#### Table 39: Register overview

| am |  | <b>OSRAM</b> |
|----|--|--------------|
|----|--|--------------|

| Addr   | <d7></d7> | <d6></d6> | <d5></d5> | <d4></d4> | <d3></d3> | <d2></d2> | <d1></d1>     | <d0></d0>          | Default | Fixed | Туре   |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|--------------------|---------|-------|--------|
| 0x1013 |           |           |           |           |           |           |               |                    | 0x00    | -     | rw     |
| 0x102B |           |           |           | DOW       |           |           |               |                    | 0x30    | 0x2C  | rw     |
| 0x102C |           |           |           | ROW_      |           |           |               |                    | 0x01    | 0x01  | rw     |
| 0x107D |           |           |           | VS        | TART1     |           |               |                    | 0x00    | -     | rw     |
| 0x107E |           |           | VSTART2   |           |           |           | VSTART        | 1                  | 0x00    | -     | rw     |
| 0x107F | VST       | ART3      |           |           | VS        | TART2     |               |                    | 0x00    | -     | rw     |
| 0x1080 |           |           |           | VS        | TART3     |           |               |                    | 0x00    | -     | rw     |
| 0x1081 | -         | -         | -         | -         | -         | -         | -             | VSTART3            | 0x00    | -     | rw     |
| 0x1087 |           |           |           | VS        | SIZE1     |           |               |                    | 0x78    | -     | rw     |
| 0x1088 |           |           | VSIZE2    |           |           |           | VSIZE1        |                    | 0x05    | -     | rw     |
| 0x1089 | VS        | IZE3      |           |           | V         | SIZE2     |               |                    | 0x00    | -     | rw     |
| 0x108A |           |           |           | VS        | SIZE3     |           |               |                    | 0x00    | -     | rw     |
| 0x108B | -         | -         | -         | -         | -         | -         | -             | VSIZE3             | 0x00    | -     | rw     |
| 0x1095 | -         | -         | -         | -         | -         | -         | -             | VFLIP              | 0x00    | -     | rw     |
| 0x10D0 |           |           |           |           |           |           |               |                    | 0x00    | -     | rw     |
| 0x10D1 |           |           |           | EVI_E     | AF_DELAT  |           |               |                    | 0x00    | -     | rw     |
| 0x10D7 | -         | -         | -         | -         | -         | -         | -             | ILLUM_EN           | 0x01    | -     | rw     |
| 0x10D8 | -         | -         | -         | -         | -         | -         | ILLUM_<br>POL |                    | 0x02    | -     | rw     |
| 0x10F0 | -         | -         | -         | -         | -         | -         | -             | IMAGER_R<br>UN     | 0x00    | -     | strobe |
| 0x10F2 |           |           |           |           |           |           |               |                    | 0x04    | -     | rw     |
| 0x10F3 |           |           |           | NB_OF     | -FRAMES   |           |               |                    | 0x00    | -     | rw     |
| 0x1100 | -         | -         | -         | -         | -         | -         | CONT          | EXT_SEL            | 0x00    | -     | rw     |
| 0x1101 |           |           |           | CONTEX    | (T_SW_SEL |           |               |                    | 0x40    | -     | rw     |
| 0x1102 | -         | -         | -         | -         | -         | -         | -             | CONTEXT_<br>SW_SEL | 0x00    | -     | rw     |
| 0x1103 |           |           |           |           |           |           |               |                    | 0x06    | -     | rw     |
| 0x1104 |           |           |           | VDL       | ANK_D     |           |               |                    | 0x00    | -     | rw     |
| 0x1105 |           |           |           | VST       | ART1_B    |           |               |                    | 0x10    | -     | rw     |
| 0x1106 |           |           | VSTART2_B |           |           |           | VSTART1_      | В                  | 0x00    | -     | rw     |
| 0x1107 | VSTA      | RT3_B     |           |           | VST       | ART2_B    |               |                    | 0x02    | -     | rw     |
| 0x1108 |           |           |           | VST       | ART3_B    |           |               |                    | 0x30    | -     | rw     |
| 0x1109 | -         | -         | -         | -         | -         | -         | -             | VSTART3_B          | 0x00    | -     | rw     |
| 0x110A |           |           |           | VSI       | IZE1_B    |           |               |                    | 0x0A    | -     | rw     |
| 0x110B |           |           | VSIZE2_B  |           |           |           | VSIZE1_I      | 3                  | 0xC0    | -     | rw     |
| 0x110C | VSIZ      | ZE3_B     |           |           | VS        | IZE2_B    |               |                    | 0x00    | -     | rw     |
| 0x110D |           |           |           | VSI       | ZE3_B     |           |               |                    | 0x0E    | -     | rw     |
| 0x110E | -         | -         | -         | -         | -         | -         | -             | VSIZE3_B           | 0x00    | -     | rw     |
| 0x1111 |           |           |           |           |           |           |               |                    | 0x04    | -     | rw     |
| 0x1112 |           |           |           | NB_OF_    | rkames_B  |           |               |                    | 0x00    | -     | rw     |
| 0x1113 |           |           |           |           |           |           |               |                    | 0x30    | -     | rw     |
| 0x1114 |           |           |           | KOW_L     | ENGIH_B   |           |               |                    | 0x01    | -     | rw     |

| Addr   | <d7></d7> | <d6></d6>             | <d5></d5>         | <d4></d4> | <d3></d3> | <d2></d2> | <d1></d1> | <d0></d0> | Default | Fixed | Туре |
|--------|-----------|-----------------------|-------------------|-----------|-----------|-----------|-----------|-----------|---------|-------|------|
| 0x1115 |           |                       |                   | EVD       |           |           |           |           | 0x0A    | -     | rw   |
| 0x1116 |           |                       |                   | LAF_      |           |           |           |           | 0x00    | -     | rw   |
| 0x2008 |           |                       |                   | Н         | SIZE      |           | 0x20      | -         | rw      |       |      |
| 0x2009 | -         | -                     | -                 | -         | -         | -         | ŀ         | ISIZE     | 0x03    | -     | rw   |
| 0x200A |           |                       |                   | HS        | TART      |           |           |           | 0x00    | -     | rw   |
| 0x200B | -         | -                     | -                 | -         | -         | -         | H         | START     | 0x00    | -     | rw   |
| 0x2045 | -         | -                     | -                 | -         | -         | -         | -         | CDS_RNC   | 0x01    | -     | rw   |
| 0x2048 | -         | -                     | -                 | -         | -         | -         | -         | CDS_IMG   | 0x01    | -     | rw   |
| 0x204B | -         | -                     | -                 | -         | -         | -         | RI        | NC_EN     | 0x03    | -     | rw   |
| 0x205B |           |                       |                   | RNC_DA    | RK_TARGET | Г         |           |           | 0x20    | 0x64  | rw   |
| 0x205C | -         | -                     | -                 | -         |           | RNC_DA    | RK_TARGE  | Т         | 0x00    | 0x00  | rw   |
| 0x205D | -         | -                     | -                 | -         | -         | -         | -         | HIST_EN   | 0x01    | -     | rw   |
| 0x205E |           |                       |                   | HIST_US   | AGE_RATIC | )         |           |           | 0x01    | -     | rw   |
| 0x2063 | -         | -                     | -                 | -         | -         | PIXEL_DA  | TA_SUPP   | BIT_ORDER | 0x04    | -     | rw   |
| 0x2064 |           |                       |                   | ESVNC SC  |           | D         |           |           | 0xF8    | -     | rw   |
| 0x2065 |           |                       |                   | 13110_30  |           | K         |           |           | 0x07    | -     | rw   |
| 0x2066 |           |                       |                   |           |           |           |           |           | 0x6C    | -     | rw   |
| 0x2067 |           |                       |                   | FSTNC_EC  |           | ĸ         |           |           | 0x07    | -     | rw   |
| 0x2068 |           |                       |                   |           |           | -0        |           |           | 0x00    | -     | rw   |
| 0x2069 |           |                       | FSYNC_EOL_MAX_CTR |           |           |           |           |           | 0x02    | -     | rw   |
| 0x206A | -         | -                     | -                 | -         |           | FSYNC_    | _START_PV | V         | 0x04    | -     | rw   |
| 0x206B |           |                       |                   | FSYNC_F   | PULSES_EN | I         |           |           | 0xFF    | -     | rw   |
| 0x206C |           |                       |                   | ESVNC SO  |           | ст        |           |           | 0x00    | -     | rw   |
| 0x206D |           |                       |                   | F31NC_30  | F_VSTART_ | _31       |           |           | 0x02    | -     | rw   |
| 0x206E |           |                       |                   |           |           | · T       |           |           | 0x7E    | -     | rw   |
| 0x206F |           |                       |                   | FSTNC_EC  | JF_VEND_3 | 51        |           |           | 0x06    | -     | rw   |
| 0x2070 |           |                       |                   |           |           | ет        |           |           | 0x6A    | -     | rw   |
| 0x2071 |           |                       |                   | F3TNC_30  | F_HSTART_ | _31       |           |           | 0x07    | -     | rw   |
| 0x2072 |           |                       |                   |           |           | ст        |           |           | 0xC8    | -     | rw   |
| 0x2073 |           |                       |                   | F3TNC_E0  | L_HSTART_ | _31       |           |           | 0x00    | -     | rw   |
| 0x2074 |           |                       |                   |           |           | · T       |           |           | 0x64    | -     | rw   |
| 0x2075 |           |                       |                   | FSTNC_EC  | JL_HEND_3 | 51        |           |           | 0x00    | -     | rw   |
| 0x2076 |           |                       | EQ                |           | JOTADT EN | AD OT     |           |           | 0xC8    | -     | rw   |
| 0x2077 |           |                       | FO                | TNC_EOF_r | ISTART_EN | /ID_31    |           |           | 0x00    | -     | rw   |
| 0x2078 |           |                       | F.0               |           |           | AD OT     |           |           | 0x1E    | -     | rw   |
| 0x2079 |           |                       | FS                | EUF_L     | JOTARI_EN | ו כ_טוי   |           |           | 0x04    | -     | rw   |
| 0x207A |           |                       | -                 |           |           | <br>Э ет  |           |           | 0xD4    | -     | rw   |
| 0x207B |           | FSYNC_EOF_HEND_EMB_ST |                   |           |           |           |           |           | 0x04    | -     | rw   |
| 0x207C | -         | VC_ID                 |                   |           |           |           |           |           | 0x00    | -     | rw   |
| 0x207D |           |                       |                   |           |           |           |           |           | 0x40    | -     | rw   |
| 0x207E |           |                       |                   | IVIIPI    |           |           |           |           | 0x06    | -     | rw   |
| 0x208D | -         | -                     | -                 | -         | -         |           | CSI2_DTY  | PE        | 0x04    | -     | rw   |

| am | OS | RAM |
|----|----|-----|
|----|----|-----|

| Addr   | <d7></d7> | <d6></d6> | <d5></d5> | <d4></d4>        | <d3></d3> | <d2></d2> | <d1></d1> | <d0></d0>                  | Default | Fixed | Туре   |
|--------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|----------------------------|---------|-------|--------|
| 0x2091 |           | TEST      | _PATTERN_ | _CFG             |           |           |           | TEST_PATT<br>ERN_CFG       | 0x00    | -     | rw     |
| 0x2098 |           |           |           | HSI              | ZE_B      |           |           |                            | 0x20    | -     | rw     |
| 0x2099 | -         | -         | -         | -                | -         | -         | н         | SIZE_B                     | 0x03    | -     | rw     |
| 0x209A |           |           |           | HST              | ART_B     |           |           |                            | 0x40    | -     | rw     |
| 0x209B | -         | -         | -         | -                | -         | -         | HS        | START_B                    | 0x00    | -     | rw     |
| 0x209C | -         | -         | -         | -                | -         | -         | -         | HFLIP                      | 0x00    | -     | rw     |
| 0x209D | -         | -         | -         | -                | -         | -         | -         | HFLIP_B                    | 0x00    | -     | rw     |
| 0x209E | -         | -         | -         | -                | -         |           | BIT_DEP   | ТН                         | 0x02    | -     | rw     |
| 0x24DC | -         | -         | DC_       | _CFG             | -         | -         | D         | C_CFG                      | 0x01    | -     | rw     |
| 0x24DD | -         | -         | -         | -                |           | DC_L      | IMIT_LOW  |                            | 0x00    | -     | rw     |
| 0x24DE | -         | -         | -         | -                |           | DC_L      | IMIT_HIGH |                            | 0x00    | -     | rw     |
| 0x24DF | -         | -         | -         | -                | -         | -         | -         | DC_LIMIT_<br>HIGH_MOD<br>E | 0x00    | -     | rw     |
| 0x3188 |           |           |           | TSEN             | IS_SIG    |           |           |                            | 0x00    | -     | ro     |
| 0x3189 | -         | -         | -         | -                |           | TSE       | NS_SIG    |                            | 0x00    | -     | ro     |
| 0x318E |           |           |           | TSEN             | S_RST     |           |           |                            | 0x00    | -     | ro     |
| 0x318F | -         | -         | -         | -                | -         | -         | TSE       | ENS_RST                    | 0x00    | -     | ro     |
| 0x4006 | -         | -         | -         | -                |           |           | BSP       |                            | 0x0F    | -     | rw     |
| 0x4007 |           |           | REG       | _READOUT_        | _POWER_S  | SAVING    |           |                            | 0x00    | -     | rw     |
| 0x401C | -         | -         | -         | -                | REG       | G_READOU  | T_POWER_  | SAVING                     | 0x5F    | 0x6F  | rw     |
| 0x5004 | -         | -         |           |                  | MIPI_SC   | OFT_RESET |           |                            | 0x00    | -     | rw     |
| 0x5006 | -         | -         | -         | MIPI_PW<br>R_DWN | -         | -         | -         | MIPI_PWR_<br>DWN           | 0x10    | -     | rw     |
| 0x5011 | -         | -         | -         | -                | -         |           | MIPI_RST_ | CFG                        | 0x33    | -     | rw     |
| 0x5013 | -         | -         | -         | -                | -         | -         | -         | PLL_LOCK_<br>CNT_RST       | 0x00    | -     | strobe |
| 0x5015 |           |           |           | PLL_LOCK         | _RISE_CN  | Т         |           |                            | 0x01    | -     | ro     |
| 0x5016 |           |           |           | PLL_LOCK         | _FALL_CN  | Т         |           |                            | 0x00    | -     | ro     |
| 0x5099 | -         | -         | -         |                  |           | MIPI_VCT  | RL        |                            | 0x00    | -     | rw     |
| 0x50D9 | -         | -         | -         | -                | -         |           | DPDN_SW   | /AP                        | 0x00    | -     | rw     |
| 0x50DC | -         | -         | -         | -                | -         | -         | PLL       | _STATUS                    | 0x00    | -     | ro     |
| 0x6001 |           |           |           | ті               |           |           |           |                            | 0x07    | -     | rw     |
| 0x6002 |           |           |           |                  |           |           |           |                            | 0xD8    | -     | rw     |
| 0x6003 | -         | -         | -         | -                | -         | -         | -         | INIT_SKEW<br>_EN           | 0x01    | -     | rw     |
| 0x6004 | _         |           |           | INIT             | SKEW      |           |           |                            | 0x7A    | -     | rw     |
| 0x6005 |           |           |           |                  | OREW      |           |           |                            | 0x12    | -     | rw     |
| 0x6006 | -         | -         | -         | -                | -         | -         | -         | TX_CTRL_E<br>N             | 0x00    | 0x01  | rw     |
| 0x6010 | -         | -         | -         | -                | -         | -         | FRAI      | ME_MODE                    | 0x00    | -     | rw     |
| 0x6011 | -         | -         | -         | -                | -         |           | POLARII   | ſY                         | 0x00    | -     | rw     |
| 0x6012 | -         | -         | -         | -                | -         | -         | -         | LANE                       | 0x00    | -     | rw     |
| 0x6013 | -         | -         | -         | -                | -         | -         | -         | CLK_MODE                   | 0x00    | -     | rw     |

| Addr   | <d7></d7> | <d6></d6> | <d5></d5> | <d4></d4> | <d3></d3>  | <d2></d2> | <d1></d1> | <d0></d0>          | Default | Fixed | Туре |
|--------|-----------|-----------|-----------|-----------|------------|-----------|-----------|--------------------|---------|-------|------|
| 0x6014 | -         | -         | -         | -         | -          | -         | ι         | JLPS               | 0x00    | -     | rw   |
| 0x6015 | -         | -         | -         | -         |            |           | ULPS      |                    | 0x00    | -     | rw   |
| 0x6016 |           |           |           | EDAME     | COUNTER    |           |           |                    | 0x00    | -     | rw   |
| 0x6017 |           |           |           | FRAME_    | _COUNTER   |           |           |                    | 0x3C    | -     | rw   |
| 0x6018 | -         | -         | -         | -         | -          | -         | INTER     | RUPT_EN            | 0x00    | -     | rw   |
| 0x6019 | -         | -         | -         | -         | -          | -         | INTERRU   | JPT_STATUS         | 0x00    | -     | ro   |
| 0x601C | -         | -         | -         | -         | -          | -         | -         | SKEW_CAL<br>_EN    | 0x00    | -     | rw   |
| 0x601D | -         | -         | -         | -         |            | SKE\      | V_COUNT   |                    | 0x02    | -     | rw   |
| 0x601E |           |           |           | SKEW      | _COUNT     |           |           |                    | 0x00    | -     | rw   |
| 0x601F | -         | -         | -         | -         | -          | -         | -         | SCRAMBLI<br>NG_EN  | 0x00    | -     | rw   |
| 0x6037 | -         | -         | -         | -         | -          | LI        | NE_COUNT  | _RAW               | 0x0F    | -     | rw   |
| 0x6038 |           |           |           | LINE_COUN | NT_USER_DE | ΞF        |           |                    | 0xFF    |       | rw   |
| 0x6039 | -         | -         | -         | -         | -          | -         | -         | LINE_COUN<br>T_EMB | 0x01    | -     | rw   |
| 0x6065 |           |           |           |           |            |           |           |                    | 0x4F    | -     | rw   |
| 0x6066 |           |           |           | IWAN      |            |           |           |                    | 0x00    | -     | rw   |
|        |           |           |           |           |            |           |           |                    |         |       |      |

# 10 Pin and package information

### 10.1 Bare die pin diagram

Figure 32: Bare die pin diagram (Top View)



(1) NC: No connect.

## **10.2** Reconstructed wafer dimensions (Bare Die)



Figure 33: RW physical dimensions

## 10.3 CSP package information

For the orientation of the pixel array in relation to the pin-1A location, see section 8.2.4.

**CALL OSRAM** 



Figure 34: CSP package outline drawing

### 8

### Attention:

The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices." Use of underfill is highly recommended to ensure board level reliability requirements are met if components are mounted on an application PCB. Due to the small pad pitch, standard reflow process may need to be adjusted to achieve reliable solder result.

|   | 1        | 2        | 3              | 4             | 5                 | 6      | 7             | 8              | 9              | 10               |
|---|----------|----------|----------------|---------------|-------------------|--------|---------------|----------------|----------------|------------------|
| к | VDD25    | VSSPIX   | VDD25          | VSSPIX        | VDD_INT_7         | VSSPIX | VDD_INT_7     | VSSD/<br>VSSIO | JTAG_MOD<br>E  | VSSD/<br>VSSIO   |
| J | VDDINT_7 | VDDNEG_2 | VDDINT_1       | VDD25         | ATPG_MOD<br>E     | VDD18  | VDD11D        | CCI_ADDR<br>1  | VDD18          | READ_TRI<br>GGER |
| н | VDD25    | VSSPIX   | VDDINT_6       | CCI_ADDR<br>0 | ILLUM_TRI<br>GGER | VDD11D | CCI_SCL       | CCI_SDA        | VDD11D         | VSSD             |
| G | VDDNEG_1 | VDD25    | VDDINT_1       |               |                   |        | NC            | REQ_EXP        | REQ_FRAM<br>E  | CLK_IN           |
| F | VSSPIX   | VDD25    | NC - VSS       |               |                   |        | NC            | ARST_N         | VSSD/<br>VSSIO | VDD11D           |
| Е | VDDINT_4 | VSSPIX   | NC - VSS       |               |                   |        | NC            | R_EXT          | VDD25          | VDD18            |
| D | VDDINT_2 | VDD25    | LDO_DIG_E<br>N |               |                   |        | VSSP/<br>VSSA | VDD25A         | VDD25          | VSSA             |
| с | VDDINT_5 | VDDINT_7 | VSSPIX         | VSSD          | VSSP/<br>VSSA     | C_EXT  | MIPI_D0_P     | MIPI_D0_N      | VDD11A         | NC               |
| в | VDDINT_3 | VDD25R   | VDD25          | VDD25         | VDD13D            | VDD11P | VDD13P        | MIPI_CLK_<br>N | MIPI_D1_N      | VDD13A           |
|   |          | VSSPIX   | VDDINT_1       | VSSD          | VDD11D            | VSSD   | VDD25         | MIPI_CLK_<br>P | MIPI_D1_P      | VDD25            |

### Table 40: CSP pin diagram (Bottom View)

### Table 41: CSP dimension information

| Symbol | Description                                  | Min [mm] | Typ [mm] | Max [mm] | Min [in] | Typ [in] | Max [in] |
|--------|----------------------------------------------|----------|----------|----------|----------|----------|----------|
| А      | Package body dimension X                     | 5.4226   | 5.4476   | 5.4726   | 0.21349  | 0.21447  | 0.21546  |
| В      | Package body dimension Y                     | 5.4198   | 5.4448   | 5.4698   | 0.21338  | 0.21436  | 0.21535  |
| С      | Package height                               | 0.6795   | 0.7395   | 0.7995   | 0.02675  | 0.02911  | 0.03148  |
| C1     | Ball height                                  | 0.0800   | 0.1100   | 0.1400   | 0.00315  | 0.00433  | 0.00551  |
| C2     | Package body thickness                       | 0.5995   | 0.6295   | 0.6595   | 0.02360  | 0.02478  | 0.02596  |
| C3     | Thickness from top glass<br>surface to wafer | 0.4300   | 0.4450   | 0.4600   | 0.01693  | 0.01752  | 0.01811  |
| C4     | Glass thickness                              | 0.3900   | 0.4000   | 0.4100   | 0.01535  | 0.01575  | 0.01614  |
| D      | Ball diameter                                | 0.1700   | 0.2000   | 0.2300   | 0.00669  | 0.00787  | 0.00906  |
| Ν      | Total ball count                             |          | 87       |          |          |          |          |
| J1     | Pins pitch X axis                            |          | 0.500    |          |          |          |          |
| J2     | Pins pitch Y axis                            |          | 0.500    |          |          |          |          |
| S1     | Edge to pin center distance along X          | 0.4438   | 0.4738   | 0.5038   | 0.01747  | 0.01865  | 0.01983  |
| S2     | Edge to pin center distance along Y          | 0.4424   | 0.4724   | 0.5024   | 0.01742  | 0.01860  | 0.01978  |

**CALL OSRAM** 

## 10.4 Pin description

Table 42: Pin description of Mira220

| Pin number                                                                                                    |                                                           | Pin name  | Pin type <sup>(1)</sup> | Description              |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|-------------------------|--------------------------|
| Bare die                                                                                                      | CSP                                                       |           |                         |                          |
| 5, 6, 10, 11, 17, 18, 22,<br>33, 39, 45, 79, 80, 81,<br>87, 88, 89, 95, 96, 97,<br>102, 108, 114, 120,<br>125 | A7, A10, B3, B4, D2,<br>D9, E9, F2, G2, H1,<br>J4, K1, K3 | VDD25     | S                       | 2.5 V external supply    |
| 47, 63, 74                                                                                                    | E10, J6, J9                                               | VDD18     | S                       | 1.8 V external supply    |
| 14                                                                                                            | B5                                                        | VDD13D    | S                       | 1.35 V external supply   |
| 21                                                                                                            | B7                                                        | VDD13P    | S                       | 1.35 V external supply   |
| 37                                                                                                            | B10                                                       | VDD13A    | S                       | 1.35 V external supply   |
| 1                                                                                                             | B2                                                        | VDD25R    | S                       | 2.5 V external supply    |
| 36                                                                                                            | D8                                                        | VDD25A    | S                       | 2.5 V external supply    |
| 15, 50, 58, 66, 71                                                                                            | A5, F10, H6, H9, J7                                       | VDD11D    | А                       | Internal supply          |
| 35                                                                                                            | C9                                                        | VDD11A    | А                       | Internal supply          |
| 20                                                                                                            | B6                                                        | VDD11P    | А                       | Internal supply          |
| 8, 76, 83, 90, 110, 111                                                                                       | A3, G3, J3                                                | VDDINT_1  | S                       | 2.5 V external supply    |
| 116, 117                                                                                                      | D1                                                        | VDDINT_2  | А                       | Internal supply          |
| 122, 123                                                                                                      | B1                                                        | VDDINT_3  | А                       | Internal supply          |
| 112, 113                                                                                                      | E1                                                        | VDDINT_4  | А                       | Internal supply          |
| 118, 119                                                                                                      | C1                                                        | VDDINT_5  | А                       | Internal supply          |
| 101                                                                                                           | H3                                                        | VDDINT_6  | А                       | Internal supply          |
| 75, 82, 91, 99, 124                                                                                           | C2, J1, K5, K7                                            | VDDINT_7  | А                       | Internal supply          |
| 100                                                                                                           | J2                                                        | VDDNEG_2  | А                       | Negative internal supply |
| 104, 105                                                                                                      | G1                                                        | VDDNEG_1  | А                       | Negative internal supply |
| 34, 38, 44                                                                                                    | C5, D7, D10                                               | VSSA      | G                       | Ground                   |
| 12, 16, 19, 32, 49, 57,<br>65, 72                                                                             | A4, A6, C4, F9, H10,<br>K8, K10                           | VSSD      | G                       | Ground                   |
| 23, 31                                                                                                        | C5, D7                                                    | VSSP      | G                       | Ground                   |
| 48, 64, 73                                                                                                    | F9, K8, K10                                               | VSSIO     | G                       | Ground                   |
| 4, 7, 9, 77, 78, 84, 85,<br>86, 92, 93, 94, 98, 103,<br>106, 107, 109, 115,<br>121, 126                       | A2, C3, E2, F1, H2,<br>K2, K4, K6                         | VSSPIX    | G                       | Ground                   |
| 42                                                                                                            | E8                                                        | R_EXT     | A                       | Bias resistor connection |
| 24                                                                                                            | C6                                                        | C_EXT     | А                       | Internal supply          |
| 54                                                                                                            | G10                                                       | CLK_IN    | DI                      | Reference clock          |
| 67                                                                                                            | H4                                                        | CCI_ADDR0 | DI                      | CCI device address bit 0 |
| 68                                                                                                            | J8                                                        | CCI_ADDR1 | DI                      | CCI device address bit 1 |



| Pin number     |                 | Pin name             | Pin type <sup>(1)</sup> | Description                 |
|----------------|-----------------|----------------------|-------------------------|-----------------------------|
| 61             | H8              | CCI_SDA              | DIO                     | CCI interface data lane     |
| 62             | H7              | CCI_SCL              | DIO                     | CCI interface clock lane    |
| 25             | A8              | MIPI_CLK_P           | HSO                     | MIPI clock lane P           |
| 26             | B8              | MIPI_CLK_N           | HSO                     | MIPI clock lane N           |
| 27             | C7              | MIPI_D0_P            | HSO                     | MIPI data lane 0 P          |
| 28             | C8              | MIPI_D0_N            | HSO                     | MIPI data lane 0 N          |
| 29             | A9              | MIPI_D1_P            | HSO                     | MIPI data lane 1 P          |
| 30             | B9              | MIPI_D1_N            | HSO                     | MIPI data lane 1 N          |
| 69             | K9              | JTAG_MODE            | DI                      | Not used. Connect to ground |
| 70             | J5              | ATPG_MODE            | DI                      | Not used. Connect to ground |
| 55             | G9              | REQ_FRAME            | DI                      | Request Frame               |
| 56             | G8              | REQ_EXP              | DI                      | Request Exposure and Frame  |
| 59             | H5              | ILLUM_TRIGGER        | DO                      | Illumination trigger signal |
| 60             | J10             | READ_TRIGGER         | DO                      | Readout trigger signal      |
| 51             | F8              | ARST_N               | DI                      | Asynchronous hard reset pin |
| 13             | D3              | $LDO\_DIG\_EN^{(2)}$ | DI                      | Digital LDO (VDD11D) enable |
| 40, 41, 52, 53 | C10, E7, F7, G7 | No connect           | NC                      | Should be left open         |
| 43, 46         | E3, F3          | No connect - VSS     | NC                      | Connect to ground           |
| 2, 3           | /               | No connect           | NC                      | Should be left open         |
|                |                 |                      |                         |                             |

(1) Explanation of abbreviations:

| Supply |
|--------|
|        |

G Ground

DI Digital Input

DO Digital Output

DIO Digital Input-Output

A Analog reference

HSO High Speed Output

NC No connect

(2) Optional, can be left unconnected. Internal pull-up to VDD25.

# 11 Color filter information

The following figure shows the color filter configuration used on the Mira220 both for RGB and RGBIR versions of the sensor. The first readout pixel is highlighted below.



Figure 35: Color filter configurations for RGBIR (left) and RGB (right)

# 12 Tape & reel information



Figure 36: Tape and reel dimensions (for CSP only)

- (1) 10 sprocket hole pitch cumulative tolerance ±0.2
- (2) Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
- (3) Ao AND Bo are measured on a plane at a distance "R" above the bottom of the pocket.
- (4) All dimensions are in millimeters.



# 13 Appendix

## 13.1 Reference documents

**Table 43: Referenced documents** 

| Reference    | Document title                                                                                   | Revision / Date |
|--------------|--------------------------------------------------------------------------------------------------|-----------------|
| [CSI-2-v1.3] | MIPI Alliance Specification for Camera Serial Interface 2 (CSI-2)                                | 1.3             |
| [DPHY-v1.2]  | MIPI Alliance Specification for D-PHY                                                            | 1.2             |
| [I2C-v6]     | I <sup>2</sup> C bus specification and user manual<br>www.nxp.com/docs/en/user-guide/UM10204.pdf | v6 / April 2014 |

## 13.2 Glossary

### Table 44: Glossary

| Abbreviation | Definition                                                           |
|--------------|----------------------------------------------------------------------|
| ACK          | Acknowledge                                                          |
| ADC          | Analog to Digital Convertor                                          |
| AR           | Augmented Reality                                                    |
| BSI          | Back-Side Illumination                                               |
| BSP          | Black Sun Protection                                                 |
| CCI          | Camera Control Interface                                             |
| CDS          | Correlated Double Sampling                                           |
| CMOS         | Complementary Metal-Oxide Semiconductor                              |
| CRA          | Chief Ray Angle                                                      |
| CRC          | Cyclic Redundancy Check                                              |
| CS           | Checksum                                                             |
| CSI          | Camera Serial Interface                                              |
| CSP          | Chip Scale Package                                                   |
| DC           | Dark Current                                                         |
| DCDT         | Dark Current Doubling Temperature                                    |
| DCDS         | Digital Correlated Double Sampling                                   |
| D-PHY        | MIPI Physical Layer Protocol                                         |
| DR           | Dynamic Range                                                        |
| DSNU         | Dark Signal Non Uniformity                                           |
| DTN          | Dark Temporal Noise                                                  |
| ECC          | Error Correction Code                                                |
| EOF          | End of Frame                                                         |
| EOI          | End of Integration                                                   |
| EOL          | End of Line                                                          |
| ESD CDM      | Electrostatic Discharge Charge Device Model                          |
| ESD HBM      | Electrostatic Discharge Human Body Model                             |
| FE           | Frame End                                                            |
| FPS          | Frames per Second                                                    |
| FS           | Frame Start                                                          |
| FWC          | Full Well Capacity                                                   |
| GLOB         | Closing global shutter state by sampling all integrated pixel values |
| HS           | High Speed                                                           |
| 10           | Input-Output                                                         |
| LP           | Low Power                                                            |
| LS           | Line Start                                                           |
|              |                                                                      |

| Abbreviation | Definition                              |
|--------------|-----------------------------------------|
| LSB          | Least Significant Bit                   |
| MIPI         | Mobile Industry Processor Interface     |
| MP           | Megapixel                               |
| MSB          | Most Significant Bit                    |
| MSL          | Moisture Sensitivity Level              |
| NACK         | Not Acknowledge                         |
| NIR          | Near Infrared                           |
| OTP          | One Time Programmable                   |
| PCB          | Printed Circuit Board                   |
| PLL          | Phase-Locked Loop                       |
| PLS          | Parasitic Light Sensitivity             |
| PRNU         | Pixel Response Non-Uniformity           |
| QE           | Quantum Efficiency                      |
| RH           | Relative Humidity                       |
| RMS          | Root Mean Square                        |
| RNC          | Row Noise Correction                    |
| ROI          | Region of Interest                      |
| RW           | Reconstructed Wafer                     |
| SCL          | Serial Clock                            |
| SDA          | Serial Data                             |
| SNR          | Signal-to-Noise Ratio                   |
| SOF          | Start of Frame                          |
| SOI          | Start of Integration                    |
| ULPS         | Ultra-Low Power State                   |
| VC           | Virtual Channel                         |
| VPTAT        | Voltage Proportional to the Temperature |
| VR           | Virtual Reality                         |

# 14 Revision information

| Document status       | Product status  | Definition                                                                                                                                                                                                                                              |
|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Preview       | Pre-development | Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice                                                         |
| Preliminary Datasheet | Pre-production  | Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice |
| Datasheet             | Production      | Information in this datasheet is based on products in ramp-up to full production<br>or full production which conform to specifications in accordance with the terms<br>of ams-OSRAM AG standard warranty as given in the General Terms of Trade         |

#### Other definitions

Draft / Preliminary:

The draft / preliminary status of a document indicates that the content is still under internal review and subject to change without notice. ams-OSRAM AG does not give any warranties as to the accuracy or completeness of information included in a draft / preliminary version of a document and shall have no liability for the consequences of use of such information.

#### Short datasheet:

A short datasheet is intended for quick reference only, it is an extract from a full datasheet with the same product number(s) and title. For detailed and full information always see the relevant full datasheet. In case of any inconsistency or conflict with the short datasheet, the full datasheet shall prevail.

| Changes from previous released version to current revision v7-00 | Page |
|------------------------------------------------------------------|------|
| Document security class is updated to "PUBLIC" in the footer     |      |
| Removed unnecessary information from the ordering information    | 6    |
| Updated rise and fall transition time                            | 9    |
| Updated minimum "row length" value                               | 41   |

Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

Correction of typographical errors is not explicitly mentioned.

# 15 Legal information

#### Copyright & disclaimer

Copyright ams-OSRAM AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams-OSRAM AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams-OSRAM AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams-OSRAM AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams-OSRAM AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams-OSRAM AG for each application. This product is provided by ams-OSRAM AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams-OSRAM AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams-OSRAM AG rendering of technical or other services.

#### Product and functional safety devices/applications or medical devices/applications:

ams-OSRAM AG components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. ams-OSRAM AG products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using ams-OSRAM AG components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of ams-OSRAM AG immediately and ams-OSRAM AG and buyer and /or customer will analyze and coordinate the customer-specific request between ams-OSRAM AG and buyer and/or customer.

#### ams OSRAM RoHS and REACH compliance statements for semiconductor products

**RoHS compliant:** The term "RoHS compliant" means that semiconductor products from ams OSRAM fully comply with current RoHS directives, and China RoHS. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU2015/863) above the defined threshold limit in the Annex II.

REACH compliant: Semiconductor products from ams OSRAM are free of Substances of Very High Concern (SVHC) according Article 33 of the REACH Regulation 2006/1907/EC; please refer to the Candidate List of Substances of ECHA here.

Important information: The information provided in this statement represents ams OSRAM knowledge and belief as of the date that it is provided. ams OSRAM bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. We are undertaking efforts to better integrate information from third parties. ams OSRAM has taken and will continue to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams OSRAM and its suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

| Headquarters            | Please visit our website at ams-osram.com                         |
|-------------------------|-------------------------------------------------------------------|
| ams-OSRAM AG            | For information about our products go to Products                 |
| Tobelbader Strasse 30   | For technical support use our Technical Support Form              |
| 8141 Premstaetten       | For feedback about this document use Document Feedback            |
| Austria, Europe         | For sales offices and branches go to Sales Offices / Branches     |
| Tel: +43 (0) 3136 500 0 | For distributors and sales representatives go to Channel Partners |